欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2023, Vol. 34 ›› Issue (11): 2958-2968.doi: 10.13287/j.1001-9332.202311.006

• • 上一篇    下一篇

甲烷排放部分抵消湿地生态系统碳汇功能:全球数据分析

展鹏飞1, 仝川1,2*   

  1. 1福建师范大学地理科学学院/碳中和未来技术学院, 福州 350117;
    2福建师范大学湿润亚热带生态-地理过程教育部重点实验室, 福州 350117
  • 收稿日期:2023-06-13 修回日期:2023-09-17 出版日期:2023-11-15 发布日期:2024-05-15
  • 通讯作者: *E-mail: tongch@fjnu.edu.cn
  • 作者简介:展鹏飞, 男, 1992年生, 博士研究生。主要从事湿地生态与碳循环研究。E-mail: zhanpengfei1@163.com
  • 基金资助:
    国家重点研发计划项目(2022YFC3105401)

Methane emissions partially offset carbon sink function in global wetlands: An analysis based on global data.

ZHAN Pengfei1, TONG Chuan1,2*   

  1. 1School of Geographical Sciences/School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou 350117, China;
    2Key Laboratory of Humid Subtropical Eco-geography Process of Ministry of Education, Fujian Normal University, Fuzhou 350117, China
  • Received:2023-06-13 Revised:2023-09-17 Online:2023-11-15 Published:2024-05-15

摘要: 湿地生态系统是吸收全球大气二氧化碳(CO2)的汇,同时土壤厌氧环境造成其是大气甲烷(CH4)的源。尽管有证据表明,湿地生态系统CH4排放部分抵消其对大气CO2的净吸收,但目前未见全球尺度湿地CH4排放对其净生态系统CO2交换(NEE)抵消效应的研究。本研究分析了全球内陆湿地(泥炭湿地和非泥炭湿地)以及滨海湿地(海草床、盐沼和红树林)中同时测定湿地NEE和CH4排放通量的数据。结果表明: 各类型湿地生态系统均为大气CO2的汇,NEE值排序为红树林(-2011.0 g CO2·m-2·a-1)<盐沼(-1636.6 g CO2·m-2·a-1)<非泥炭地(-870.8 g CO2·m-2·a-1)<泥炭地(-510.7 g CO2·m-2·a-1)<海草床(-61.6 g CO2·m-2·a-1)。基于100年尺度CH4全球变暖潜势将CH4排放通量转换成CO2当量通量(CO2-eq flux)发现,CH4排放分别抵消海草床、盐沼、红树林、非泥炭地和泥炭地生态系统净CO2吸收的19.4%、14.0%、36.1%、64.9%和60.1%,而在未来20年尺度上,它们分别抵消CO2吸收的57.3%、41.4%、107.0%、192.0%和177.3%,部分红树林、泥炭地和非泥炭地是净CO2当量源。100年尺度各类湿地生态系统净温室气体平衡仍为负值,说明即使考虑CH4排放,在100年尺度各类湿地生态系统仍为碳汇。明晰湿地生态系统CH4排放主要调控机制并提出合理的减排对策,对于维系湿地生态系统碳汇功能,减缓气候变暖至关重要。

关键词: 净生态系统CO2交换, CH4排放, 抵消, 净温室气体平衡, 滨海湿地, 内陆湿地

Abstract: Wetlands serve as atmospheric carbon dioxide (CO2) sinks, as well as atmospheric methane (CH4) source due to the anaerobic soil environment. Although some studies report that the CH4 emission from wetlands partially offset their net CO2 uptake, there is no global data analysis on the offset of net ecosystem exchange of CO2 (NEE) by CH4 emission in wetland ecosystems. In this study, we collected the data sets of NEE and CH4 flux which were simultaneously measured in the inland wetlands (peatland and non-peatland wetland) and coastal wetlands (seagrass beds, salt marshes and mangroves) around the world. The results showed that all types of wetlands were atmospheric CO2 sink, with the NEE values ranking as follows: mangrove (-2011.0 g CO2·m-2·a-1) < salt marsh (-1636.6 g CO2·m-2·a-1) < non-peatland wetland (-870.8 g CO2·m-2·a-1) < peatland (-510.7 g CO2·m-2·a-1) < seagrass bed (-61.6 g CO2·m-2·a-1). When CH4 flux being converted into CO2-equivalent flux (CO2-eq flux) based on the 100-year scale global warming potentials, we found that the CH4 emissions partially offset 19.4%, 14.0%, 36.1%, 64.9% and 60.1% of the net CO2 uptake in seagrass beds, salt marshes, mangroves, non-peatland wetland and peatland, respectively. Over the 20-year scale, CH4 emissions partially offset 57.3%, 41.4%, 107.0%, 192.0% and 177.3% of the net CO2 uptake, respectively. Some mangroves, peatlands, and non-peatland wetlands acted as net CO2 equivalent source. Over the 100-year scale, the net greenhouse gas balance of each wetland ecosystem was negative value, which indicated that even accounting CH4 emission, wetland ecosystem was still an atmospheric carbon sink. Our results indicated that clarifying the main regulation mechanism of CH4 emission from wetland ecosystems and proposing reasonable CH4 reduction measures are crucial to maintain the carbon sink function in wetland ecosystems, and to mitigate the trend of climate warming.

Key words: net ecosystem exchange of CO2, CH4 emission, offset, net greenhouse gas balance, coastal wetland, inland wetland