欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报

• 研究报告 • 上一篇    下一篇

塔河森林生态系统蒸散发的定量估算

曲迪,范文义**,杨金明,王绪鹏   

  1. (东北林业大学, 哈尔滨 150040)
  • 出版日期:2014-06-18 发布日期:2014-06-18

Quantitative estimation of evapotranspiration from Tahe forest ecosystem, Northeast China.

QU Di, FAN Wen-yi, YANG Jin-ming, WANG Xu-peng   

  1. (Northeast Forestry University, Harbin 150040, China)
  • Online:2014-06-18 Published:2014-06-18

摘要:

蒸散发是农业、气象、水文科学研究的重要参数,是全球水文循环过程的重要组成部分.本文应用改进的DHSVM分布式水文模型,利用光学遥感TM数据反演得到叶面积指数等地表数据,由数字高程模型求得坡度、坡向等地形指数因子,定量估算塔河地区2007年逐日蒸散发.应用BP神经网络建立逐日蒸散发量与逐日径流出口流量的关系,并建立研究区水量平衡方程,共同检验研究结果的准确性.结果表明: 该模型可以较好地应用于本研究区.塔河流域年总蒸散量234.01 mm,蒸散发与季节有明显的相关性,夏季蒸散发值最高,日均蒸散发值1.56 mm,秋季、春季日均蒸散发值分别为0.30、0.29 mm,冬季蒸散发值最低.地表覆盖类型对蒸散发值影响明显,阔叶林的蒸散发能力强于针阔混交林,其次为针叶林.

 

Abstract: Evapotranspiration (ET) is an important parameter of agriculture, meteorology and hydrology research, and also an important part of the global hydrological cycle. This paper applied the improved DHSVM distributed hydrological model to estimate daily ET of Tahe area in 2007 using leaf area index and other surface data extracted TM remote sensing data, and slope, aspect and other topographic indices obtained by using the digital elevation model. The relationship between daily ET and daily watershed outlet flow was built by the BP neural network, and a water balance equation was established for the studied watershed, together to test the accuracy of the estimation. The results showed that the model could be applied in the study area. The annual total ET of Tahe watershed was 234.01 mm. ET had a significant seasonal variation. The ET had the highest value in summer and the average daily ET value was 1.56 mm. The average daily ET in autumn and spring were 0.30, 0.29 mm, respectively, and winter had the lowest ET value. Land cover type had a great effect on ET value, and the broadleaf forest had a higher ET ability than the mixed forest, followed by the needle leaf forest.