欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报

• 研究报告 • 上一篇    下一篇

住区形态变迁与居民通勤能源消费的关系

周健1,肖荣波1**,孙翔2   

  1. (1广东省环境科学研究院低碳与生态研究中心, 广州 510045; 2华南理工大学, 广州 510641)
  • 出版日期:2013-07-18 发布日期:2013-07-18

Relationships between settlement morphology transition and residents commuting energy consumption.

ZHOU Jian1, XIAO Rong-bo1, SUN Xiang2   

  1. (1Low Carbon & Ecological Research Center, Guangdong Provincial Academy of Environment Science, Guangzhou 510045, China; 2South China University of Technology, Guangzhou 510641, China)
  • Online:2013-07-18 Published:2013-07-18

摘要:

快速城市化和城市扩张引发了住区形态的变迁,但形态变迁与居民通勤能源消费关系还不明确,如何通过城市的可持续公共管理政策来控制城市住区形态变迁过程下通勤能源消费及其温室气体排放有着重要意义.以厦门为例,通过土地利用与交通耦合模型TRANUS的情景分析研究了住区形态的变迁对人口、工作以及土地消费空间分布的影响,进而分析了不同情景下通勤能源消费和温室气体排放的水平.结果表明: 基准情景下交通出行早高峰能源消费总量为54.35 tce,CO2排放为119.12 t;住区形态变迁情景下,通勤能耗和CO2排放同比基准情景均增加12%;通过适当的土地利用、交通和经济政策的实施,通勤能源消费与CO2排放同比基准情景减少7%,说明城市公共政策能够有效地控制住区形态变迁背景下通勤能源消费和温室气体排放的增长.
 

Abstract:

Settlement morphology transition is triggered by rapid urbanization and urban expansion, but its relationships with residents commuting energy consumption remains ambiguous. It is of significance to understand the controlling mechanisms of sustainable public management policies on the energy consumption and greenhouse gases emission during the process of urban settlement morphology transition. Taking the Xiamen City of East China as a case, and by using the integrated land use and transportation modeling system TRANUS, a scenario analysis was made to study the effects of urban settlement morphology transition on the urban spatial distribution of population, jobs, and land use, and on the residents commuting energy consumption and greenhouse gasses emission under different scenarios. The results showed that under the Business As Usual (BAU) scenario, the energy consumption of the residents at the morning peak travel time was 54.35 tce, and the CO2 emission was 119.12 t. As compared with those under BAU scenario, both the energy consumption and the CO2 emission under the Transition of Settlement Morphology (TSM) scenario increased by 12%, and, with the implementation of the appropriate policies such as land use, transportation, and economy, the energy consumption and CO2 emission under the Transition of Settlement Morphology with Policies (TSMP) scenario reduced by 7%, indicating that urban public management policies could effectively control the growth of residents commuting energy consumption and greenhouse gases emission during the period of urban settlement morphology transition.