欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报

• 研究报告 • 上一篇    下一篇

香樟凋落叶分解对辣椒生长的抑制作用及施氮的缓解效应

陈洪,胡庭兴**,王茜,胡红玲,蒋雪,周光良,陈刚   

  1. (四川农业大学林学院林业生态工程省级重点实验室, 四川雅安625014)
  • 出版日期:2015-02-18 发布日期:2015-02-18

Inhibition of decomposing leaf litter of Cinnamomum camphora on growth of Capsicum annuum and the alleviation effect of nitrogen application.

CHEN Hong, HU Ting-xing, WANG Qian, HU Hong-ling, JIANG Xue, ZHOU Guang-liang, CHEN Gang   

  1. (Sichuan Provincial Key Laboratory of Forestry Ecological Engineering, College of Forestry, Sichuan Agricultural University, Ya’an 625014, Sichuan, China)
  • Online:2015-02-18 Published:2015-02-18

摘要:

采用盆栽试验,研究了香樟凋落叶分解对辣椒生长、生理特性和发育节律的影响及施氮对凋落叶分解效应的影响.试验设置对照(CK,每盆0 g)和每盆25 g(L25)、50 g(L50)、100 g(L100)3个水平凋落叶处理,凋落叶分解39 d后开始施氮处理(每盆3.0 g尿素,分6次施入).结果表明: 凋落叶分解明显抑制了辣椒的叶面积、株高、基径和生物量积累,且施用量越大,作用越强,持续时间越长;低量处理(L25)即可使其蕾数在观察期内(分解55~75 d)平均减少88.7%,96 d时的结实植株率减少40%,而中高量处理(L50和L100)下无植株现蕾和结实;各水平凋落叶处理的辣椒光合色素含量与净光合速率(Pn)几乎均低于CK;过氧化氢(H2O2)含量升高,超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性升高,丙二醛(MDA)含量仅在高量处理(L100)下显著上升;施氮可明显减轻辣椒生长发育受抑制的现象,各凋落叶处理的辣椒叶面积在施氮后52 d,株高、基径、生物量在施氮后83 d几乎恢复至CK水平,现蕾和结实率也得以明显提升.

 

Abstract: Effects of decomposing leaf litter of Cinnamomum camphora on growth, physiological and phenological traits of Capsicum annuum, and modification of these effects by nitrogen application were investigated using a pot experiment. C. camphora leaf litter was applied at rate of 0, 25, 50 100 g per pot, resulting into four treatments, i.e., CK (the control), L25, L50 and L100. Nitrogen application was firstly performed on the 39th d of decomposition (3.0 g urea was added to each pot six times). Leaf area, plant height, basal diameter and biomass production of C. annuum were all inhibited sharply by exposure to the leaf litter, and the inhibition effect increased with the increasing leaf litter in terms of both the intensity and the stability. Treated with L25, budding number   reduced by 88.7% averagely during 55th-75th d, and the rate of fructification plant decreased by 40% on the 96th d of decomposition, while neither buds nor fruits were observed when exposed to L50 and L100 at that time. Pigment contents and net photosynthetic rate (Pn) were impacted due to leaf litter addition, and malonaldehyde (MDA) was only markedly promoted by L100. Inhibition on growth and development of C. annuum caused by leaf litter decomposition could be alleviated by nitrogen application. Leaf area treated with leaf litter recovered to the control level on the 52nd d after nitrogen application, and similar results appeared on the 83rd d after nitrogen application for other growth traits. Budding and fructification status were also visibly improved.