欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2017, Vol. 28 ›› Issue (12): 3841-3847.doi: 10.13287/j.1001-9332.201712.001

• 目次 • 上一篇    下一篇

飞播马尾松林碳密度分配特征及其影响因素

潘萍1, 韩天一2, 欧阳勋志1*, 刘苑秋1, 臧颢1, 宁金魁1, 杨阳1   

  1. 1江西农业大学林学院, 南昌 330045
    2江西省林业调查规划研究院, 南昌 330046
  • 收稿日期:2017-05-02 出版日期:2017-12-18 发布日期:2017-12-18
  • 通讯作者: * E-mail: oyxz_2003@hotmail.com
  • 作者简介:潘萍,女,1988年生,博士研究生.主要从事森林资源管理与监测研究.E-mail:panping0306@163.com
  • 基金资助:

    本文由国家自然科学基金项目(31360181)和中国科学院战略性先导科技专项(XDA05050205)资助

Carbon density distribution characteristics and influencing factors in aerially seeded Pinus massoniana plantations

PAN Ping1, HAN Tian-yi2, OUYANG Xun-zhi1*, LIU Yuan-qiu1, ZANG Hao1, NING Jin-kui1, YANG Yang1   

  1. 1College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
    2Jiangxi Province Forestry Survey Planning Institute, Nanchang 330046, China
  • Received:2017-05-02 Online:2017-12-18 Published:2017-12-18
  • Contact: * E-mail: oyxz_2003@hotmail.com
  • Supported by:

    This work was supported by the National Na-tural Science Foundation of China (31360181) and the Chinese Academy of Sciences Strategic Priority Research Program (XDA05050205)

摘要: 研究江西省赣州市飞播马尾松林碳密度的分配特征,选取有关立地、林分、林下植被及凋落物等方面的15个因子,建立林分碳密度与影响因子的关系模型,筛选出主要影响因子.结果表明: 林分平均碳密度为98.29 t·hm-2,表现为土壤层(49.58 t·hm-2)>乔木层(45.25 t·hm-2)>林下植被层(2.23 t·hm-2)>凋落物层(1.23 t·hm-2);乔木层、凋落物层、土壤层碳密度之间呈显著正相关,其他各层次碳密度之间的相关性均不显著.株数密度、平均胸径、土层厚度、坡位、林龄、郁闭度是影响飞播马尾松林林分碳密度的主要因子,各因子的偏相关系数为0.331~0.434,t 检验结果为显著;运用多元数量化模型I复相关系数为0.796,F 检验结果为显著(F=9.28).对于林分碳密度,株数密度以1500~2100株·hm-2最好,而郁闭度以0.4~0.7最好,株数密度及郁闭度过高或过低对林分固碳能力均会产生不利影响;林龄及平均胸径越大、土层越厚,其林分碳密度越高,下坡位的林分碳密度高于其他坡位.

Abstract: The distribution characteristics of carbon density under aerially seeded Pinus massoniana plantations in Ganzhou City of Jiangxi Province were studied. Total 15 factors, including site, stand, understory vegetation, litter and so on were selected to establish a relationship model between stand carbon density and influencing factors, and the main influencing factors were also screened. The results showed that the average carbon density was 98.29 t·hm-2 at stand level with soil layer (49.58 t·hm-2) > tree layer (45.25 t·hm-2) > understory vegetation layer (2.23 t·hm-2) > litter layer (1.23 t·hm-2). Significantly positive correlations were found among the tree, litter and soil layers, but not among the other layers. The main factors were tree density, avera-ge diameter at breast height (DBH), soil thickness, slope position, stand age and canopy density to affect carbon density in aerially seeded P. massoniana plantations. The partial correlation coefficients of the six main factors ranged from 0.331 to 0.434 with significance by t test. The multiple correlation coefficient of quantitative model I reached 0.796 with significance by F test (F=9.28). For stand density, the best tree density and canopy density were 1500-2100 plants·hm-2 and 0.4-0.7, respectively. The moderate density was helpful to improve ecosystem carbon sequestration. The carbon density increased with increasing stand age, DBH and soil thickness, and was higher in lower than middle and upper slope positions.