欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报

• 研究报告 • 上一篇    下一篇

林冠与大气间二氧化碳交换过程的模拟

刁一伟1,2;王安志1;金昌杰1;关德新1;裴铁璠1   

  1. 1中国科学院沈阳应用生态研究所, 沈阳 110016;
    2南京信息工程大学应用气象学院, 南京 210044
  • 收稿日期:2005-12-29 修回日期:2006-09-23 出版日期:2006-12-18 发布日期:2006-12-18

Simulation of CO2 exchange between forest canopy and atmosphere

DIAO Yiwei1,2; WANG Anzhi1; JIN Changjie1; GUAN Dexin1;PEI Tiefan1   

  1. 1Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
    2College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • Received:2005-12-29 Revised:2006-09-23 Online:2006-12-18 Published:2006-12-18

摘要: 以长白山阔叶红松林为研究对象,利用Raupach提出的局地近场理论(localized near field, LNF)耦合垂直风速标准差σwz)和拉格朗日时间尺度TLz),建立林冠内CO2源汇强度和平均浓度廓线之间的关系.结果表明,拉格朗日模型能准确、稳定地模拟林冠与大气之间CO2的交换特征.模拟值比涡动相关系统实测值高出约15%,与实测值的相关性为89%,这种差异可能主要来自于输入的浓度廓线的波动以及大气稳定层结造成的涡动相关观测系统误差.在近地面层,由于土壤呼吸作用,整个时间段都为CO2源.林冠层的CO2源汇强度变化较为复杂,其日变化经历了源-汇-源的转变过程.林冠与大气间CO2通量交换明显受大气稳定度影响.

Abstract: Estimating the scalar source/sink distribution of CO2 and its vertical fluxes within and above forest canopy continues to be a critical research problem in biosphere-atmosphere exchange processes and plant ecology. With broadleaved Korean pine forest in Changbai Mountains as test object, and based on Raupach’s localized near field theory, the source/sink and vertical flux distribution of CO2 within and above forest canopy were modeled through an inverse Lagrangian dispersion analysis. This model correctly predicted a strong positive CO2 source strength in the deeper layers of the canopy due to soil-plant respiration, and a strong CO2 sink in the upper layers of the canopy due to the assimilation by sunlit foliage. The foliage in the top layer of canopy changed from a CO2 source in the morning to a CO2 sink in the afternoon, while the soil constituted a strong CO2 source all the day. The simulation results accorded well with the eddy covariance CO2 flux measurements within and above the canopy, and the average precision was 89%. The CO2 exchange predicted by the analysis was averagely 15% higher than that of the eddy correlation, but exhibited identical temporal trend. Atmospheric stability remarkably affected the CO2 exchange between forest canopy and atmosphere.