欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报

• 研究报告 • 上一篇    下一篇

3,5-二甲基吡唑磷酸盐(DMPZP)对土壤硝化作用的影响

史云峰1,2;武志杰1;陈利军1;孙志梅1,2   

  1. 1中国科学院沈阳应用生态研究所, 沈阳 110016;2中国科学院研究生院, 北京 100039
  • 收稿日期:2006-06-05 修回日期:1900-01-01 出版日期:2007-05-15 发布日期:2007-05-15

Effects of 3,5-dimethylpyrazole phosphate (DMPZP) on soil nitrification.

SHI Yun-feng1,2; WU Zhi-jie1; CHEN Li-jun1; SUN Zhi-mei1,2   

  1. 1Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;2Graduate University of Chinese Academy of Sciences, Beijing 100039, China
  • Received:2006-06-05 Revised:1900-01-01 Online:2007-05-15 Published:2007-05-15

摘要: 采用好气培养法,以双氰胺(DCD)为参比对象研究了新型吡唑类硝化抑制剂3,5-二甲基吡唑磷酸盐(DMPZP)对土壤硝化作用的影响.结果表明,DMPZP对土壤中的铵氧化作用有较强的抑制效果,在施用量为1.0%(纯N含量)时能显著提高土壤中的NH4+-N浓度,降低NO3--N浓度.DMPZP的硝化抑制效应随用量的增加而增强,相同质量的DMPZP的硝化抑制效果不及DCD,而DCD又不及2倍质量的DMPZP,但等摩尔数(物质量)的DMPZP硝化抑制效果明显优于DCD. DMPZP在施用后的第7天至第14天的硝化抑制作用最强,与不添加抑制剂的处理相比,DMPZP添加量为1.0%和2.0%(纯N含量)时的表观硝化率在第7天和第14天分别降低了29.3%、41.7%和18.6%、34.3%;在此期间,添加DMPZP处理的硝化抑制率均高于30%.DMPZP的施用还可减缓土壤pH的降低速率,但施用DMPZP和DCD对土壤pH的影响差异不显著.

Abstract: With aerobic incubation test, this paper studied the effects of 3,5-dimethylpyrazole phosphate (DMPZP) on soil nitrification, taking dicyandiamide (DCD) as reference. The results indicated that when the dosage was 1.0% of applied N, DMPZP could significantly inhibit the oxidation of soil ammonium, increase soil NH4+-N concentration, and decrease soil NO3--N concentration. The inhibitory effect of DMPZP increased with its increasing dosage. DCD showed a higher efficacy when its dosage was the same with DMPZP, but a lower efficacy when the DMPZP was applied twofold. However, the efficacy of equimolar DMPZP was significantly higher than that of DCD, because of the smaller molecular weight of DCD. The highest inhibitory effect of DMPZP was observed during the period of 7-14 days after its application, with an inhibition rate higher than 30%. Compared with the control, the apparent inhibition rate was decreased by 29.3% and 41.7% on the 7th day, and by 18.6% and 34.3% on the 14th day when the application rate of DMPZP was 1.0% and 2.0% of applied N, respectively. DMPZP could also slow down the falling rate of soil pH, but no significant difference was observed between the treatments of applying DMPZP and DCD.

Key words: Wheat varieties (lines), Indole alkaloids, Tillering stage, Elongation stage, Flag leaf, Ear