Welcome to Chinese Journal of Applied Ecology! Today is Share:

Chinese Journal of Applied Ecology ›› 2023, Vol. 34 ›› Issue (7): 1862-1870.doi: 10.13287/j.1001-9332.202307.020

• Original Articles • Previous Articles     Next Articles

Infiltration and shear strength characteristics of gully heads soil of typical vegetation on the gullied Loess Plateau, Northwest China

YANG Hao1, WANG Wenlong1,2*, LOU Yibao1, FENG Lanqian2, ZHU Ya’nan1   

  1. 1State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China;
    2Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China
  • Received:2023-01-03 Accepted:2023-05-04 Online:2023-07-15 Published:2024-01-15

Abstract: Gully head is the main active part of gully erosion, which seriously affects the occurrence of gully headcut erosion. To investigate root distribution and soil physical and mechanical characteristics of typical vegetation gully head, we analyzed the infiltration, root distribution, physical and mechanical properties of soil-root complex of soil in different layers (0-1 m) in natural restoration gully head and artificial restoration gully head. The results showed that the variability of soil bulk and total porosity among different vegetation gully heads was low, with bulk density ranging from 1.10 to 1.37 g·cm-3 and total porosity ranging from 48.3% to 58.4%. Infiltration index of different vegetation gully heads generally decreased with increasing soil depth. The infiltration rate of different soil layers in natural restoration gully head tended to stabilize in 20-30 min, while that of artificial restoration gully head tended to stabilize in 40 min. The infiltration capacity and average infiltration rate of artificial restoration gully head were generally higher than those of natural restoration gully head in all soil layers. Root length density, root surface area density, and average diameter all tended to decrease with increasing soil depth. Except for the 20-40 cm soil layer, root length density, root surface area density and average diameter of natural restoration gully head were all lower than those of artificial restoration gully head. Root system of both vegetation gully heads mainly consisted of 0-0.5 mm roots, accounting for 84.2%-93.6% of the total root length. In the vertical depth, with the increases of water content, the cohesion force decreased linearly with the deepening of soil layer, ranging from 0.42 to 22.67 kPa. The average cohesion force of artificial restoration gully head was higher than natural restoration gully head at each level of water content. The study revealed the effects of vegetation on the gully head cut erosion, which could provide scientific basis for the effective prevention and control of soil erosion in the region.

Key words: gully head, soil shear strength, soil infiltration, root characteristic, Loess Plateau gully region