Welcome to Chinese Journal of Applied Ecology! Today is Share:

Chinese Journal of Applied Ecology

Previous Articles     Next Articles

Effects of nitrogen application on canopy vertical structure, grain-leaf ratio and economic benefit of winter wheat under drip irrigation.

ZHANG Na1, XU Wen-xiu1*, LI Lan-hai2, WU Ni-ping1, WU Pei-jie1, CHENG Xue-feng1   

  1. (1College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China;2Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China)
  • Online:2016-08-18

Abstract: To optimize the fertilization rate of winter wheat under drip irrigation in Xinjiang region, a field investigation was carried out to assess effects of nitrogen (N) applications on canopy vertical structure, grain-leaf ratio, yield and economic benefit of winter wheat. Four rates of nitrogen application, 0 kg·hm-2(N0), 104 kg·hm-2(N1), 173 kg·hm-2(N2) and 242 kg·hm-2(N3) were set in a randomized block experimental design. Meantime, leaf and stem morphological characters, canopy temperature and humidity in flowering stage, grain-leaf area ratio, yield and yield components, economic benefits of winter wheat were observed under different treatments. The results showed that the leaf length and width at different positions of wheat under the nitrogen fertilization treatments were significantly higher than that without nitrogen fertilization (P<0.05), and plant height ranged from 65.57 to 81.58 cm. With an increasing rate of nitrogen fertilization, both leaf area index  and stem diameter presented a trend of first increasing and then decreasing, and reached the maximum under N2 treatment, which was 5.48 and 0.49 cm, respectively. Diurnal variation of canopy temperature and humidity were “convex” and “concave” shape, followed an order of N0>N1>N2>N3 in temperature, but reversely in canopy humidity. The duration of high temperature higher than 35 ℃ were shorten 1 hour to 3.5 hours as the nitrogen application level increased, and there was significant difference between N1 and N3 on grainleaf ratio. Yield and economic benefit decreased initially and then increased with increasing nitrogen application. Yield and economic benefit of treatment N2 were 32.8% and 77.7% higher than those of treatment N0, 12.6% and 5.4% higher than those of treatment N1, and 5.2% and 4.2% higher than those of treatment N3, respectively. These results indicated that nitrogen application at about 173 kg·hm-2 could be recommended as the optimum rate for winter wheat, which had good leaf and plant morphology, appropriate canopy temperature and humidity, high yield and economic efficiency in the experiment area.