[1] IPCC. Climate Change 2013: The Physical Science Basis. Cambridge: Cambridge University Press, 2013 [2] Husen A, Iqbal M, Aref I. Plant growth and foliar chara-cteristics of faba bean (Vicia faba L.) as affected by indole-acetic acid under water-sufficient and water-deficient conditions. Journal of Environmental Biology, 2017, 38: 179-186 [3] 王长庭, 王启基, 沈振西, 等. 模拟降水对高寒矮嵩草草甸群落影响的初步研究. 草业学报, 2003, 12(2): 25-29[Wang C-T, Wang Q-J, Shen Z-X, et al. A preliminary study of the effect of simulated precipitation on an alpine Kobresia humilis meadow. Acta Prataculturae Sinica, 2003, 12(2): 25-29] [4] 孙羽, 张涛, 田长彦, 等. 增加降水对荒漠短命植物当年牧草生长及群落结构的影响. 生态学报, 2009, 29(4): 1859-1868[Sun Y, Zhang T, Tian C-Y, et al. Response of grass growth and productivity to enhanced water input in ephemeral desert grassland in Gurbantunggut desert. Acta Ecologica Sinica, 2009, 29(4): 1859-1868] [5] 肖迪, 王晓洁, 张凯, 等. 氮添加对山西太岳山天然油松林主要植物叶片性状的影响. 植物生态学报, 2016, 40(7): 686-701[Xiao D, Wang X-J, Zhang K, et al. Effects of nitrogen addition on leaf traits of common species in natural Pinus tabuliformis forests in Taiyue Mountain, Shanxi Province, China. Chinese Journal of Plant Ecology, 2016, 40(7): 686-701] [6] Lu JJ, Tan DY, Baskin JM, et al. Germination season and watering regime, but not seed morph, affect life history traits in a cold desert diaspore-heteromorphic annual. PLoS One, 2014, 9(7): e102018 [7] Flannigan MD, Wotton BM, Marshall GA, et al. Fuel moisture sensitivity to temperature and precipitation: Climate change implications. Climate Change, 2016, 134: 59-71 [8] 胡汝骥, 马虹, 樊自立, 等. 新疆水资源对气候变化的响应. 自然资源学报, 2002, 17(1): 22-27[Hu R-J, Ma H, Fan Z-L, et al. Response of water resources to climate change in Xinjiang. Journal of Natural Resources, 2002, 17(1): 22-27] [9] 赵宗慈, 丁一汇, 徐影, 等. 人类活动对20世纪中国西北地区气候变化影响检测和21世纪预测. 气候与环境研究, 2003, 8(1): 26-34[Zhao Z-C, Ding Y-H, Xu Y, et al. Detection and prediction of climate change for the 20th and 21st century due to human acti-vity in northwest China. Climatic and Environmental Research, 2003, 8(1): 26-34] [10] Zheng YR, Xie ZX, Yu Y, et al. Effects of burial in sand and water supply regime on seedling emergence of six species. Annals of Botany, 2005, 95: 1237-1245 [11] 张浩, 王新平, 张亚峰, 等. 干旱荒漠区不同生活型植物生长对降雨量变化的响应. 生态学杂志, 2015, 34(7): 1847-1853[Zhang H, Wang X-P, Zhang Y-F, et al. Responses of plant growth of different life forms to rainfall amount changes in an arid desert area. Chinese Journal of Ecology, 2015, 34(7): 1847-1853] [12] Shemtov S, Gutterman Y. Influence of water regime and photoperiod treatments on resource allocation and reproductive successes of two annuals occurring in the Negev Desert of Israel. Journal of Arid Environments, 2003, 55: 123-142 [13] Zavaleta ES, Shaw MR, Chiariello NR, et al. Grassland responses to three years of elevated temperature, CO2, precipitation and N deposition. Ecological Monographs, 2003, 73: 585-604 [14] 孙岩, 何明珠, 王立. 降水控制对荒漠植物群落物种多样性和生物量的影响. 生态学报, 2018, 38(7): 2425-2433[Sun Y, He M-Z, Wang L. Effects of precipitation control on plant diversity and biomass in a desert region. Acta Ecologica Sinica, 2018, 38(7): 2425-2433] [15] 毛祖美, 张佃民. 新疆北部早春短命植物区系纲要. 干旱区研究, 1994, 11(3): 1-26[Mao Z-M, Zhang D-M. The conspectus of ephemeral flora in northern Xinjiang. Arid Zone Research, 1994, 11(3): 1-26] [16] 张丽华, 陈亚宁, 赵锐锋, 等. 温带荒漠中温度和土壤水分对土壤呼吸的影响. 植物生态学报, 2009, 33(5): 936-949[Zhang L-H, Chen Y-N, Zhao R-F, et al. Impact of temperature and soil water content on soil respiration temperate deserts. Chinese Journal of Plant Ecology, 2009, 33(5): 936-949] [17] 张学涛, 谭敦炎. 10种菊科短命植物的物候与主要气象因子的关系. 干旱区研究, 2007, 24(4): 470-475[Zhang X-T, Tan D-Y. Phenology of 10 ephemeral species of Asteraceae in relation to the main meteorological factors. Arid Zone Research, 2007, 24(4): 470-475] [18] 陶冶, 张元明. 准噶尔荒漠6种类短命植物生物量分配与异速生长关系. 草业学报, 2014, 23(2): 38-48[Tao Y, Zhang Y-M. Biomass allocation patterns and allometric relationships of six ephemeroid species in Junggar Basin, China. Acta Prataculturae Sinica, 2014, 23(2): 38-48] [19] Chen YF, Zhang LW, Shi X, et al. Life history responses of two ephemeral plant species to increased precipitation and nitrogen in the Gurbantunggut Desert. PeerJ, 2019, 7(14): e6158 [20] 吕玲, 谭敦炎. 旱麦草属4种短命植物的结实特性及生殖包装. 新疆农业大学学报, 2005, 28(3): 21-25[Lyu L, Tan D-Y. The characteristics of fruit set and reproductive package in four species of ephemeral plants in Eremopyrum (Poaceae). Journal of Xinjiang Agricultu-ral University, 2005, 28(3): 21-25] [21] Liu Y, Li X, Zhang Q, et al. Simulation of regional temperature and precipitation in the past 50 years and the next 30 years over China. Quaternary International, 2010, 212: 57-63 [22] 姜春明, 于贵瑞. 陆生植物对全球环境变化的适应. 中国生态农业学报, 2010, 18(1): 215-222[Jiang C-M, Yu G-R. A review on terrestrial plant acclimation to global environment change. Chinese Journal of Eco-Agriculture, 2010, 18(1): 215-222] [23] Cheng XL, An SQ, Li B, et al. Summer rain pulse size and rainwater uptake by three dominant in a desertified grassland ecosystem in northwestern China. Plant Ecology, 2006, 184: 1-12 [24] 王艺霖, 周玫, 李苹, 等. 根系形态可塑性决定黄栌幼苗在瘠薄土壤中的适应对策. 北京林业大学学报, 2017, 39(6): 60-69[Wang Y-L, Zhou M, Li P, et al. Root morphological plasticity determing the adaptive strategies of Cotinus coggygria seedlings in barren soil environment. Journal of Beijing Forestry University, 2017, 39(6): 60-69] [25] 王瑾, 王堃. 植物根系沙套的生态功能及其形成影响因素研究进展. 草原与草坪, 2009(2): 88-92[Wang J, Wang K. A review: The ecological function and forming mechanism of rhizosheath. Grassland & Turf, 2009(2): 88-92] [26] Dunbabin V, Diggle ZRJ. Simulating form and function of root systems: Efficiency of nitrate uptake is dependent on root system architecture and the spatial and temporal variability of nitrate supply. Functional Ecology, 2004, 18: 204-211 [27] 廖红, 戈振扬, 严小龙, 等. 水磷耦合胁迫下植物磷吸收的理想根构型: 模拟与应用. 科学通报, 2001, 46(8): 641-646[Liao H, Ge Z-Y, Yan X-L, et al. Ideal root configurations of phosphorus uptake in plants under water-phosphorus coupling stress: Simulation and application. Chinese Science Bulletin, 2001, 46(8): 641-646] [28] Bhatt AK, Bhalla TC, Agrawal HO, et al. Effect of seed size on protein and lipid contents, germination and imbibition in true potato seeds. Potato Research, 1989, 32: 477-481 [29] Franks SJ, Weis AE. A change in climate causes rapid evolution of multiple life-history traits and their interactions in an annual plant. Journal of Evolutionary Biology, 2008, 21: 1324-1334 [30] 崔婉莹, 刘思佳, 魏亚伟, 等. 氮添加和水分胁迫对红松、水曲柳幼苗生物量分配的影响. 应用生态学报, 2019, 30(5): 1454-1462[Cui W-Y, Liu S-J, Wei Y-W, et al. Effects of nitrogen addition on biomass allocation of Pinus koraiensis and Fraxinus mandshurica seedlings under water stress. Chinese Journal of Applied Ecology, 2019, 30(5): 1454-1462] [31] 许振柱, 周广胜, 王玉辉. 植物的水分阈值与全球变化. 水土保持学报, 2003, 17(3): 155-158[Xu Z-Z, Zhou G-S, Wang Y-H. Water threshold of plant and global change. Journal of Soil and Water Conservation, 2003, 17(3): 155-158] [32] Sherry RA, Weng E, Iii JAA, et al. Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie. Global Change Biology, 2010, 14: 2923-2936 [33] Liao M, Fillery IRP, Palta JA. Early vigorous growth is a major factor influencing nitrogen uptake in wheat. Functional Plant Biology, 2004, 31: 121 [34] Daisuke S, Mikiko K, Hitoshi S. Phytohormonal regulation of biomass allocation and morphological and physiological traits of leaves in response to environmental changes in Polygonum cuspidatum. Frontiers in Plant Science, 2016, 7: 1189 [35] 张涛, 田长彦, 孙羽. 两种短命植物春萌秋萌个体生态生物学特征比较. 植物生态学报, 2007, 31(6): 1174-1180[Zhang T, Tian C-Y, Sun Y. Ecological and biological differences between spring and autumn plants of two desert ephemerals. Chinese Journal of Plant Ecology, 2007, 31(6): 1174-1180] |