[1] Liu X, Guo ZW, Ke ZW, et al. Increasing potential risk of a global aquatic invader in Europe in contrast to other continents under future climate change. PLoS One, 2011, 6(3): e18429 [2] 王苏盆, 柯尊伟, 蔡亚非, 等. 克氏原螯虾在舟山群岛永久性静水水体中的分布及其影响因素. 生态学杂志, 2010, 29(6): 1175-1180 [Wang S-P, Ke Z-W, Cai Y-F, et al. Distribution of introduced red swamp crayfish (Procambarus clarkii) in permanent lentic water bodies on Zhoushan Archipelago of China and related affecting factors. Chinese Journal of Ecology, 2010, 29(6): 1175-1180] [3] Rodríguez CF, Bécares E, Fernndez-alez M, et al. Loss of diversity and degradation of wetlands as a result of introducing exotic crayfish. Biological Invasions, 2005, 7: 75-85 [4] 武正军, 蔡凤金, 贾运锋, 等. 桂林地区克氏原螯虾对泽蛙蝌蚪的捕食. 生物多样性, 2008, 16(2): 150-155 [Wu Z-J, Cai F-J, Jia Y-F, et al. Predation impact of Procambarus clarkii on Rana limnocharis tadpoles in Guilin area. Biodiversity Science, 2008, 16(2): 150-155] [5] Cai W, Ma ZX, Yang CY, et al. Using eDNA to detect the distribution and density of invasive crayfish in the Honghe-Hani rice terrace World Heritage site. PLoS One, 2017, 12(5): e0177724 [6] 房锋, 张朝贤, 黄红娟, 等. 基于MaxEnt的麦田恶性杂草节节麦的潜在分布区预测. 草业学报, 2013, 22(2): 62-70 [Fang F, Zhang C-X, Huang H-J, et al. Potential distribution of Tausch’s goatgrass (Aegilops tauschii) in both China and the rest of the world as predicted by MaxEnt. Acta Prataculturae Sinica, 2013, 22(2): 62-70] [7] 李明阳, 巨云为, 吴文浩, 等. 气候变化情景下外来森林病虫害潜在生境动态分析——以美国南方松大小蠹为例. 北京林业大学学报, 2009, 31(4): 64-69 [Li M-Y, Ju Y-W, Wu W-H, et al. Dynamic analysis of potential habitat of alien forest invasive species under climate change scenario: A case study of Dendroctonus frontalis. Journal of Beijing Forestry University, 2009, 31(4): 64-69] [8] Suwannatrai A, Pratumchart K, Suwannatrai K, et al. Modeling impacts of climate change on the potential distribution of the carcinogenic liver fluke, Opisthorchis viverrini, in Thailand. Parasitology Research, 2017, 116: 243-250 [9] Suen JP. Potential impacts to freshwater ecosystems caused by flow regime alteration under changing climate conditions in Taiwan. Hydrobiologia, 2010, 649: 115-128 [10] 王庆, 杨家新, 匡腾蛟, 等. 冬季温度刺激对克氏原螯虾繁育的影响. 淡水渔业, 2012, 42(2): 93-96 [Wang Q, Yang J-X, Kuang T-J, et al. Effect of warming up to stimulate Procambarus clarkii to breed in winter. Freshwater Fisheries, 2012, 42(2): 93-96] [11] 谢文星, 董方勇, 谢山, 等. 克氏原螯虾的食性、繁殖和栖息习性研究. 水利渔业, 2008, 28(4): 63-65 [Xie W-X, Dong F-Y, Xie S, et al. Study on feeding, reproduction and perching habit of Procambarus clarkii. Reservoir Fisheries, 2008, 28(4): 63-65] [12] 蔡凤金, 武正军, 何南, 等. 克氏原螯虾的入侵生态学研究进展. 生态学杂志, 2010, 29(1): 124-132 [Cai F-J, Wu Z-J, He N, et al. Research progress in invasion ecology of Procambarus clarkia. Chinese Journal of Ecology, 2010, 29(1): 124-132] [13] 张琴, 张东方, 吴明丽, 等. 基于生态位模型预测天麻全球潜在适生区. 植物生态学报, 2017, 41(7): 770-778 [Zhang Q, Zhang D-F, Wu M-L, et al. Predicting the global areas for potential distribution of Gastrodia elata based on ecological niche models. Chinese Journal of Plant Ecology, 2017, 41(7): 770-778] [14] 赵泽芳, 卫海燕, 郭彦龙, 等. 人参潜在地理分布以及气候变化对其影响预测. 应用生态学报, 2016, 27(11): 3607-3615 [Zhao Z-F, Wei H-Y, Guo Y-L, et al. Potential distribution of Panax ginseng and its predicted responses to climate change. Chinese Journal of Applied Ecology, 2016, 27(11): 3607-3615] [15] 朱耿平, 刘晨, 李敏, 等. 基于Maxent和GARP模型的日本双棘长蠹在中国的潜在地理分布分析. 昆虫学报, 2014, 57(5): 581-586 [Zhu G-P, Liu C, Li M, et al. Potential geographical distribution of Sinoxylon japonicum (Coleoptera: Bostrichidae) in China based on Maxent and GARP models. Acta Entomologica Sinica, 2014, 57(5): 581-586] [16] Farashi A, Naderi M. Predicting invasion risk of raccoon Procyon lotor in Iran using environmental niche models. Landscape and Ecological Engineering, 2017, 13: 229-236 [17] Anderson RP, Gonzalez IJ. Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecological Modelling, 2011, 222: 2796-2811 [18] Pearson RG, Thuiller W, Araújo MB, et al. Model-based uncertainty in species range prediction. Journal of Biogeography, 2006, 33: 1704-1711 [19] Thuiller W, Lafourcade B, Engler R, et al. BIOMOD: A platform for ensemble forecasting of species distributions. Ecography, 2009, 32: 369-373 [20] Muscarella R, Galante PJ, Soley-Guardia M, et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology & Evolution, 2015, 5: 1198-1205 [21] Li YH, Guo XW, Chen LP, et al. Inferring invasion history of red swamp crayfish (Procambarus clarkii) in China from mitochondrial control region and nuclear intron sequences. International Journal of Molecular Sciences, 2015, 16: 14623-14639 [22] 李小花, 刘刚, 周立志, 等. 淮河克氏原螯虾种群遗传结构. 动物学杂志, 2013, 48(6): 868-874 [Li X-H, Liu G, Zhou L-Z, et al. Population genetic structure of red swamp crayfish in Haihe River Wetlands. Chinese Journal of Zoology, 2013, 48(6): 868-874] [23] 曹玲亮, 周立志, 张保卫. 安徽三大水系入侵物种克氏原螯虾的种群遗传格局. 生物多样性, 2010, 18(4): 398-407 [Cao L-L, Zhou L-Z, Zhang B-W. Genetic patterns of an invasive Procambarus clarkii population in the three river basins of Anhui Province. Biodiversity Science, 2010, 18(4): 398-407] [24] Brown JL, Anderson B. SDMtoolbox: A Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 2014, 5: 694-700 [25] 张彦静, 马方舟, 徐海根, 等. 基于MaxEnt模型的细足捷蚁在我国的适生区分析. 生态学杂志, 2018, 37(11): 3364-3370 [Zhang Y-J, Ma F-Z, Xu H-G. Prediction of potential geographic distribution of Anoplolepis gracilipes (Homoptera: Formicinae). Chinese Journal of Ecology, 2018, 37(11): 3364-3370] [26] 张殷波, 刘彦岚, 秦浩, 等. 气候变化条件下山西翅果油树适宜分布区的空间迁移预测. 应用生态学报, 2019, 30(2): 496-502 [Zhang Y-B, Liu Y-L, Qin H, et al. Prediction on spatial migration of suitable distribution of Elaeagnus mollis under climate change conditions in Shanxi Province, China. Chinese Journal of Applied Ecology, 2019, 30(2): 496-502] [27] 辛晓歌, 吴统文, 张洁. BCC气候系统模式开展的CMIP5试验介绍. 气候变化研究进展, 2012, 8(5): 69-73 [Xin X-G, Wu T-W, Zhang J. Introduction of CMIP5 experiments carried out by BCC climate system model. Climate Change Research, 2012, 8(5): 69-73] [28] 苏文地, 张培松, 罗微. 基于主成分分析的橡胶种植适宜性评价——以海南省儋州市为例. 热带农业科学, 2014, 34(3): 69-75 [Su W-D, Zhang P-S, Luo W. Suitability evaluation of rubber planting based on PCA. Chinese Journal of Tropical Agriculture, 2014, 34(3): 69-75] [29] Anderson RP, Lew D, Peterson AT. Evaluating predictive models of species’ distributions: Criteria for selecting optimal models. Ecological Modelling, 2003, 162: 211-232 [30] Ramírez-Amezcua Y, Steinmann VW, Ruiz-Sanchez E. Mexican alpine plants in the face of global warming: Potential extinction within a specialized assemblage of narrow endemics. Biodiversity and Conservation, 2016, 25: 865-885 [31] 王茹琳, 李庆, 封传红,等. 基于MaxEnt的西藏飞蝗在中国的适生区预测. 生态学报, 2017, 37(24): 8556-8566 [Wang R-L, Li Q, Feng C-H, et al. Predicting potential ecological distribution of Locusta migratoria tibetensis in China using MaxEnt ecological niche modeling. Acta Ecologica Sinica, 2017, 37(24): 8556-8566] [32] Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 2006, 190: 231-259 [33] 朱耿平, 乔慧捷. Maxent模型复杂度对物种潜在分布区预测的影响. 生物多样性, 2016, 24(10): 1189-1196 [Zhu G-P, Qiao H-J. Effect of the Maxent model’s complexity on the prediction of species potential distributions. Biodiversity Science, 2016, 24(10): 1189-1196] [34] 张海娟, 陈勇, 黄烈健, 等. 基于生态位模型的薇甘菊在中国适生区的预测. 农业工程学报, 2011, 27(S1): 413-418 [Zhang H-J, Chen Y, Huang L-J, et al. Predicting potential geographic distribution of Mikania micrantha planting based on ecological niche models in China. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(S1): 413-418] [35] Stockwell, David RB, Ian R. Noble Induction of sets of rules from animal distribution data: A robust and informative method of analysis. Mathematics & Computers in Simulation, 1992, 33: 385-390 [36] 许仲林, 彭焕华, 彭守璋. 物种分布模型的发展及评价方法. 生态学报, 2015, 35(2): 557-567 [Xu Z-L, Peng H-H, Peng S-Z. The development and evaluation of species distribution models. Acta Ecologica Sinica, 2015, 35(2): 557-567] [37] 崔相艳, 王文娟, 杨小强, 等. 基于生态位模型预测野生油茶的潜在分布. 生物多样性, 2016, 24(10): 1117-1128 [Cui X-Y, Wang W-J, Yang X-Q, et al. Potential distribution of wild Camellia oleifera based on ecological niche modeling. Biodiversity Science, 2016, 24(10): 1117-1128] [38] 黄勇杰, 卢佳斌, 王锋堂, 等. 基于MaxEnt模型预测海南岛海南臭蛙的潜在地理分布. 动物学杂志, 2017, 52(1): 30-41 [Huang Y-J, Lu J-B, Wang F-T, et al. Predicting the potential geographical distribution of Hainan odorous frog (Odorrana hainanensis) in Hainan Province by MaxEnt. Chinese Journal of Zoology, 2017, 52(1): 30-41] [39] Banha F, Anastcio PM. Desiccation survival capacities of two invasive crayfish species. Knowledge and Management of Aquatic Ecosystems, 2014, 413: 1 [40] Martinez PJ. Invasive crayfish in a high desert river: Implications of concurrent invaders and climate change. Aquatic Invasions, 2012, 7: 219-234 [41] Soutygrosset C, Anastcio PM, Aquiloni L, et al. The red swamp crayfish Procambarus clarkii in Europe: Impacts on aquatic ecosystems and human well-being. Limnologica, 2016, 58: 78-93 [42] 王卫民. 软壳克氏原螯虾在我国开发利用的前景. 水生生物学报, 1999, 23(4): 375-381 [Wang W-M. The exploitation and utilization of red swamp. Acta Hydrobiologica Sinica, 1999, 23(4): 375-381] |