[1] Mori AS, Lertzman KP, Gustafsson L. Biodiversity and ecosystem services in forest ecosystems: A research agenda for applied forest ecology. Journal of Applied Ecology, 2017, 54: 12-27 [2] 邱波, 王刚. 生产力与生物多样性关系研究进展. 生态科学, 2003, 22(3): 265-270[Qiu B, Wang G. Advance in the study of the relationship between productivity and biodiversity. Ecological Science, 2003, 22(3): 265-270] [3] 范玉龙, 胡楠, 丁圣彦, 等. 陆地生态系统服务与生物多样性研究进展. 生态学报, 2016, 36(15): 4583-4593 [Fan Y-L, Hu N, Ding S-Y, et al. Progress in terrestrial ecosystem services and biodiversity. Acta Ecologica Sinica, 2016, 36(15): 4583-4593] [4] 傅伯杰, 于丹丹. 生态系统服务权衡与集成方法. 资源科学, 2016, 38(1): 1-9[Fu B-J, Yu D-D. Trade-off analyses and synthetic integrated method of multiple ecosystem services. Resources Science, 2016, 38(1): 1-9] [5] 刘绿怡, 刘慧敏, 任嘉衍, 等. 生态系统服务形成机制研究进展. 应用生态学报, 2017, 28(8): 2731-2738[Liu L-Y, Liu H-M, Ren J-Y, et al. Research progress on the mechanism of ecosystem services generation. Chinese Journal of Applied Ecology, 2017, 28(8): 2731-2738] [6] 谢高地, 肖玉, 鲁春霞. 生态系统服务研究: 进展、局限和基本范式. 植物生态学报, 2006, 30(2): 191-199[Xie G-D, Xiao Y, Lu C-X. Study on ecosystem services: Progress, limitation and basic paradigm. Chinese Journal of Plant Ecology, 2006, 30(2): 191-199] [7] 郑华, 欧阳志云, 赵同谦, 等. 人类活动对生态系统服务功能的影响. 自然资源学报, 2003, 18(1): 118-126[Zheng H, Ouyang Z-Y, Zhao T-Q, et al. The impact of human activities on ecosystem services. Journal of Natural Resources, 2003, 18(1): 118-126] [8] 欧阳志云, 郑华. 生态系统服务的生态学机制研究进展. 生态学报, 2009, 29(11): 6183-6188[Ouyang Z-Y, Zheng H. Ecological mechanisms of ecosystem services. Acta Ecologica Sinica, 2009, 29(11): 6183-6188] [9] 吕一河, 张立伟, 王江磊. 生态系统及其服务保护评估: 指标与方法. 应用生态学报, 2013, 24(5): 1237-1243[Lyu Y-H, Zhang L-W, Wang J-L. Assessment of ecosystem and its services conservation: Indicators and methods. Chinese Journal of Applied Ecology, 2013, 24(5): 1237-1243] [10] Soliveres S, van der Plas F, Manning P, et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 2016, 536: 456-459 [11] Mori AS. Biodiversity and ecosystem services in forests: Management and restoration founded on ecological theory. Journal of Applied Ecology, 2017, 54: 7-11 [12] 傅伯杰, 于丹丹, 吕楠. 中国生物多样性与生态系统服务评估指标体系. 生态学报, 2017, 37(2): 341-348[Fu B-J, Yu D-D, Lyu N. An indicator system for biodiversity and ecosystem services evaluation in China. Acta Ecologica Sinica, 2017, 37(2): 341-348] [13] Chillo V, Vázquez DP, Amoroso MM, et al. Land-use intensity indirectly affects ecosystem services mainly through plant functional identity in a temperate forest. Functional Ecology, 2018, 32: 1390-1399 [14] Laforest-Lapointe I, Paquette A, Messier C, et al. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature, 2017, 546: 145-147 [15] 车盈, 金光泽. 物种多样性和系统发育多样性对阔叶红松林生产力的影响. 应用生态学报, 2019, 30(7): 2241-2248[Che Y, Jin G-Z. Effects of species diversity and phylogenetic diversity on productivity of a mixed broadleaved-Korean pine forest. Chinese Journal of Applied Ecology, 2019, 30(7): 2241-2248] [16] Hector A, Bagchi R. Biodiversity and ecosystem multifunctionality. Nature, 2007, 448: 188-190 [17] Zheng H, Wang L, Peng W, et al. Realizing the values of natural capital for inclusive, sustainable development: Informing China’s new ecological development strategy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116: 8623-8628 [18] 张全国, 张大勇. 生物多样性与生态系统功能: 最新的进展与动向. 生物多样性, 2003, 11(5): 351-363[Zhang Q-G, Zhang D-Y. Biodiversity and ecosystem functioning: Recent advances and trends. Biodiversity Science, 2003, 11(5): 351-363] [19] 刘晓娟, 马克平. 植物功能性状研究进展. 中国科学: 生命科学, 2015, 45(4): 325-339[Liu X-J, Ma K-P. Plant functional traits: Concepts, applications and future directions. Scientia Sinica Vitae, 2015, 45(4): 325-339] [20] Steudel B, Hallmann C, Lorenz M, et al. Contrasting biodiversity-ecosystem functioning relationships in phylogenetic and functional diversity. New Phytologist, 2016, 212: 409-420 [21] Shen Y, Yu S, Lian J, et al. Tree aboveground carbon storage correlates with environmental gradients and functional diversity in a tropical forest. Scientific Reports, 2016, 6: 25304 [22] Huang Y, Chen Y, Castro-Izaguirre N, et al. Impacts of species richness on productivity in a large-scale subtropi-cal forest experiment. Science, 2018, 362: 80-83 [23] Kessler M, Salazar L, Homeier J, et al. Species richness-productivity relationships of tropical terrestrial ferns at regional and local scales. Journal of Ecology, 2014, 102: 1623-1633 [24] Cusens J, Wright SD, Mcbride PD, et al. What is the form of the productivity-animal-species-richness relationship? A critical review and meta-analysis. Ecology, 2012, 93: 2241-2252 [25] Wen Z, Zheng H, Smith JR, et al. Functional diversity overrides community-weighted mean traits in linking land-use intensity to hydrological ecosystem services. Science of the Total Environment, 2019, 682: 583-590 [26] Conti G, Díaz S. Plant functional diversity and carbon storage: An empirical test in semi-arid forest ecosystems. Journal of Ecology, 2013, 101: 18-28 [27] Cadotte MW, Cavender-Bares J, Tilman D, et al. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS One, 2009, 4(5): e5695 [28] Venail P, Gross K, Oakley TH, et al. Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Functional Ecology, 2015, 29: 615-626 [29] Wagg C, Bender SF, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 5266-5270 [30] Valencia E, Maestre FT, Le Bagousse-Pinguet Y, et al. Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytologist, 2015, 206: 660-671 [31] Maestre FT, Castillo-Monroy AP, Bowker MA, et al. Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. Journal of Ecology, 2012, 100: 317-330 [32] Mouillot D, Villeger S, Scherer-Lorenzen M, et al. Functional structure of biological communities predicts ecosystem multifunctionality. PLoS One, 2011, 6(3): e17476 [33] Allan E, Manning P, Alt F, et al. Biodiversity and ecosystem multifunctionality. Ecology Letters, 2015, 18: 834-843 [34] Gamfeldt L, Roger F. Revisiting the biodiversity-ecosystem multifunctionality relationship. Nature Ecology & Evolution, 2017, 1: 168 [35] Lefcheck JS, Byrnes JE, Isbell F, et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nature Communications, 2015, 6: 6936 [36] 李双成, 张才玉, 刘金龙, 等. 生态系统服务权衡与协同研究进展及地理学研究议题. 地理研究, 2013, 32(8): 1379-1390[Li S-C, Zhang C-Y, Liu J-L, et al. The tradeoffs and synergies of ecosystem services: Research progress, development trend, and themes of geography. Geographical Research, 2013, 32(8): 1379-1390] [37] 彭建, 胡晓旭, 赵明月, 等. 生态系统服务权衡研究进展:从认知到决策. 地理学报, 2017, 72(6): 960-973[Peng J, Hu X-X, Zhao M-Y, et al. Research progress on ecosystem service trade-offs: From cognition to decision-making. Acta Geographica Sinica, 2017, 72(6): 960-973] [38] Smukler SM, Sánchez-Moreno S, Fonte SJ, et al. Biodiversity and multiple ecosystem functions in an organic farmscape. Agriculture, Ecosystems & Environment, 2010, 139: 80-97 [39] Lamarque P, Lavorel S, Mouchet M, et al. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 13751-13756 [40] Cadotte MW, Carscadden K, Mirotchnick N. Beyond species: Functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 2011, 48: 1079-1087 [41] Eisenhauer N, Hines J, Isbell F, et al. Plant diversity maintains multiple soil functions in future environments. eLife, 2018, 7: e41228 [42] Schuldt A, Assmann T, Brezzi M, et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nature Communications, 2018, 9: 2989 [43] Pecl GT, Araújo MB, Bell JD, et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 2017, 355: 1-9 [44] Kreyling J, Dengler J, Walter J, et al. Species richness effects on grassland recovery from drought depend on community productivity in a multisite experiment. Ecology Letters, 2017, 20: 1405-1413 [45] Hisano M, Searle EB, Chen HYH. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biological Reviews, 2018, 93: 439-456 [46] Ammer C. Diversity and forest productivity in a changing climate. New Phytologist, 2019, 221: 50-66 [47] Pires APF, Srivastava DS, Marino NAC, et al. Interactive effects of climate change and biodiversity loss on ecosystem functioning. Ecology, 2018, 99: 1203-1213 [48] Duffy JE, Lefcheck JS, Stuart-Smith RD, et al. Biodiversity enhances reef fish biomass and resistance to climate change. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 6230-6235 [49] Zheng H, Chen F, Ouyang Z, et al. Impacts of reforestation approaches on runoff control in the hilly red soil region of Southern China. Journal of Hydrology, 2008, 356: 174-184 [50] Guillaume T, Maranguit D, Murtilaksono K, et al. Sensitivity and resistance of soil fertility indicators to land-use changes: New concept and examples from conversion of Indonesian rainforest to plantations. Ecological Indicators, 2016, 67: 49-57 [51] Barnes AD, Jochum M, Mumme S, et al. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nature Communications, 2014, 5: 5351 [52] Xu WH, Xiao Y, Zhang JJ, et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114: 1601-1606 [53] Isbell F, Craven D, Connolly J, et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 2015, 526: 574-577 [54] Gherardi LA, Sala OE. Enhanced interannual precipitation variability increases plant functional diversity that in turn ameliorates negative impact on productivity. Ecology Letters, 2015, 18: 1293-1300 [55] Lindenmayer DB, Franklin JF, Lhmus A, et al. A major shift to the retention approach for forestry can help resolve some global forest sustainability issues. Conservation Letters, 2012, 5: 421-431 [56] Piqueray J, Ferroni L, Delescaille L, et al. Response of plant functional traits during the restoration of calcareous grasslands from forest stands. Ecological Indicators, 2015, 48: 408-416 [57] Werden LK, Alvarado JP, Zarges S, et al. Using soil amendments and plant functional traits to select native tropical dry forest species for the restoration of degraded Vertisols. Journal of Applied Ecology, 2018, 55: 1019-1028 [58] Ostertag R, Warman L, Cordell S, et al. Using plant functional traits to restore Hawaiian rainforest. Journal of Applied Ecology, 2015, 52: 805-809 [59] Laughlin DC. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecology Letters, 2014, 17: 771-784 [60] Jnes H, Kotta J, Prnoja M, et al. Functional traits of marine macrophytes predict primary production. Functional Ecology, 2017, 31: 975-986 [61] Pérez-Ramos IM, Matías L, Gmez-Aparicio L, et al. Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nature Communications, 2019, 10: 539619 [62] Barnes AD, Allen K, Kreft H, et al. Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nature Ecology & Evolution, 2017, 1: 1511-1519 |