欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2016, Vol. 27 ›› Issue (11): 3559-3568.doi: 10.13287/j.1001-9332.201611.015

• • 上一篇    下一篇

不同氮水平下不同种稗草对水稻产量形成的影响

张自常, 谷涛, 李永丰*, 杨霞   

  1. 江苏省农业科学院植物保护研究所, 南京 210014
  • 收稿日期:2016-03-08 出版日期:2016-11-18 发布日期:2016-11-18
  • 通讯作者: E-mail: Liyongfeng_2010@163.com
  • 作者简介:张自常,男,1982年生,博士,副研究员. 主要从事农田杂草生态控制研究. E-mail: zfe915@163.com
  • 基金资助:
    本文由公益性行业(农业)科研专项(201303031)、国家自然科学基金项目(31301276)、江苏省农业科技自主创新资金(CX(15)1002)和江苏省农业三新工程SXGC(2014)012资助

Effects of different baynyardgrass varieties on grain yield formation of rice at different nitrogen application levels.

ZHANG Zi-chang, GU Tao, LI Yong-feng*, YANG Xia   

  1. Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2016-03-08 Online:2016-11-18 Published:2016-11-18
  • Contact: E-mail: Liyongfeng_2010@163.com
  • Supported by:
    This work was supported by the Agro-scientific Research Programs in Public Interest (201303031), National Natural Science Foundation of China (31301276), Jiangsu Agriculture Science and Technology Innovation Fund (CX(15)1002), and Jiangsu “Three-innovation” Agricultural Project SXGC(2014)012.

摘要: 以‘南粳9108’(粳稻)为材料,自移栽至成熟期分别与无芒稗、西来稗和光头稗共培养,以无稗草共培为对照,观察不同种类共培稗草在不同施氮水平下(0、120、240、360 kg N·hm-2)对水稻产量形成的影响.结果表明:相同氮肥水平下,不同种稗草株高表现为西来稗>无芒稗>光头稗,生育期由长到短为无芒稗>西来稗>光头稗.随着氮肥施用量的增加,不同种稗草的生物量在240 kg N·hm-2下达到最大值,然后降低,无芒稗和西来稗的生物量均显著高于光头稗.在0 kg N·hm-2下,不同种稗草对水稻产量无显著影响;在120 kg N·hm-2下,无芒稗和光头稗处理水稻产量与无稗草处理差异不显著,但西来稗处理产量较无稗草处理显著降低;在240 kg N·hm-2下,无芒稗、西来稗和光头稗处理显著减产;在360 kg N·hm-2下,无芒稗和西来稗处理产量较无稗草处理显著降低,光头稗处理与无稗草处理差异不显著.稗草和氮肥对水稻产量形成具有明显的互作效应.120 kg N·hm-2下,西来稗处理显著降低了水稻灌浆期剑叶硝酸还原酶活性、光合速率和根系氧化力以及成熟期氮积累量和干物质量,其他稗草处理与对照差异不显著;在240和360 kg N·hm-2下,无芒稗和西来稗处理降低了水稻上述指标;在0 kg N·hm-2下,各处理的上述指标差异不显著.回归分析表明,稗草表型对水稻产量的影响由大到小的顺序为生物量、株高、生育期和分蘖数,推测稗草较大的生物量造成水稻剑叶光合速率、硝酸还原酶活性、根系氧化力、氮积累量和干物质积累量降低,影响了水稻的生长发育,造成水稻减产.

Abstract: This study aimed to investigate the effects of different barnyardgrass varieties on yield formation of rice. A Japonica rice cultivar, Nanjing 9108, was used and co-cultured with three barnyardgrass varieties from transplanting to maturity under different nitrogen (N) levels of 0, 120, 240, and 360 kg N·hm-2, taking baynyardgrass free as control. The three barnyardgrass varieties were Echinochloa crusgalli var. mitis, E. crusgali var. zelayensis and E. colonum. The results showed that, at the same N level, the plant height of the three barnyardgrass varieties was E. crusgali var. zelayensis > E. crusgalli var. mitis > E. colonum, and the growth duration was E. crusgalli var. mitis > E. crusgali var. zelayensis > E. colonum. The biomass of baynyardgrass increased with the increase of N application rates and reached a peak at the N rate of 240 kg N·hm-2, and it decreased at 360 kg N·hm-2. The biomass of either E. crusgalli var. mitis or E. crusgali var. zelayensis was significantly higher than that of E. colonum. At the 0 kg N· hm-2 level, all barnyardgrass varieties showed no significant effect on rice yield. At the 120 kg N· hm-2 level, rice yield was not significantly different among the three treatments of barnyardgrass free, co-cultured with E. crusgalli var. mitis, and co-cultured with E. colonum, but it was significantly decreased when co-cultured with E. crusgali var. zelayensis. At the 240 kg N·hm-2 level, all treatments of co-cultured with barnyardgrass significantly decreased the rice yield. At the 360 kg N·hm-2 level, rice yield was significantly decreased under the treatments of co-cultured with E. crusgali var. zelayensis or with E. crusgalli var. mitis, and showed no significant difference between barnyardgrass free and co-cultured with E. colonum. All these data indicated an interaction between barnyardgrass and N fertilizer, which mediated the formation of grain yield of rice. Furthermore, at the 120 kg N· hm-2 level, the co-cultured E. crusgali var. zelayensis treatment significantly reduced leaf nitrate reductase activity and photosynthetic rate and root oxidation activity during the grain filling period, and decreased nitrogen accumulation and dry matter accumulation at the maturity stage, but other two treatments showed no significant effect when compared with barnyardgrass free treatment. These physiological indices of rice were significantly reduced by both E. crusgalli var. mitis and E. crusgali var. zelayensis treatments at either 240 or 360 kg N·hm-2 level, and showed no significant difference among all treatments at the 0 kg N·hm-2 level. Regression analysis showed that the order of effects of barnyardgrass phenotypes on rice grain yield was biomass, plant height, growth duration and tiller number. All these results suggested that the coexistence with large biomass of barnyardgrass inhibited the leaf photosynthetic rate, nitrate reductase activity, root oxidation activity, nitrogen accumulation and dry matter accumulation of rice, and consequently, reduced the rice grain yield.