[1] Ren HY, Yu H, Zhang S, et al. Genome sequencing provides insights into the evolution and antioxidant activity of Chinese bayberry. BMC Genomics, 2019, 20: 458, https://doi.org/10.1186/s12864-019-5818-7 [2] Ren HY, Li G, Qi XJ, et al. Identification and characterization of Pestalotiopsis spp. causing twig blight disease of bayberry (Myrica rubra Sieb. & Zucc) in China. European Journal of Plant Pathology, 2013, 137: 451-461 [3] 孙化田, 陈国贵, 曹若彬. 中国拟盘多毛孢属四个新组合种. 浙江农业大学学报, 1990, 16(suppl. 2): 151-154 [Sun H-T, Chen G-G, Cao R-B. Four new combinations of Pestalotiopsis in China. Acta Agriculturae Universitatis Zhejiangensis, 1990, 16(suppl. 2): 151-154] [4] 孙化田, 曹若彬. 寄生果树上的拟盘多毛孢属真菌的鉴定. 浙江农业大学学报, 1990, 16(suppl.2): 179-185 [Sun H-T, Cao R-B. Identification of Pestalotiopsis parasitized on fruit crops. Acta Agriculturae Universitatis Zhejiangensis, 1990, 16(suppl. 2): 179-185] [5] 葛起新, 陈育新, 徐同. 中国真菌志, 拟盘多毛孢属. 北京: 科学出版社, 2009 [Ge Q-X, Chen Y-X, Xu T. Flora Fungorum Sinicorum: Pestalotiopsis. Beijing: Science Press, 2009] [6] Lee JC, Yang XS, Schwartz M, et al. The relationship between an endangered North American tree and an endophytic fungus. Chemistry and Biology, 1995, 2: 721-727 [7] 任海英, 梁森苗, 郑锡良, 等. 杨梅凋萎病菌侵染、传播及树体内分布规律. 浙江农业学报, 2016, 28(4): 630-639 [Ren H-Y, Liang S-M, Zheng X-L, et al. Infection, spread and distribution of pathogens of twig blight disease on bayberry. Acta Agriculturae Zhejiangensis, 2016, 28(4): 630-639] [8] 高红, 盛剑, 白旭, 等. 浑源黄芪内生细菌的菌群组成及其功能. 微生物学报, 2020, 60(8): 1638-1647 [Gao H, Sheng J, Bai X, et al. Composition and function of endophytic bacteria residing the root tissue of Astragalus mongholicus in Hunyuan. Acta Microbiologica Sinica, 2020, 60(8): 1638-1647] [9] 邢颖, 张莘, 郝志鹏, 等. 烟草内生菌资源及其应用研究进展. 微生物学通报, 2015, 42(2): 411-419 [Xing Y, Zhang S, Hao Z-P, et al. Biodiversity of endophytes in tobacco plants and their potential application: A mini review. Microbiology China, 2015, 42(2): 411-419] [10] 王颜波, 张伟溪, 丁昌俊, 等. 不同生态环境下银中杨内生菌群落结构及生态位变异. 林业科学, 2020, 56(2): 48-60 [Wang Y-B, Zhang W-X, Ding C-J, et al. Community structure and niche differentiation of endophytic microbiome in Populus alba × P. berolinensis under different ecological environment. Scientia Silvae Sinicae, 2020, 56(2): 48-60] [11] 李聪聪, 朱秉坚, 徐琳, 等. 高寒草甸优势植物叶内、根内与土壤原核微生物群落的分异. 生态学报, 2020, 40(14): 4942-4953 [Li C-C, Zhu B-J, Xu L, et al. Differentiations of prokaryotic communities in leaf and root endosphere of dominant plants and bulk soils in alpine meadows. Acta Ecologica Sinica, 2020, 40(14): 4942-4953] [12] 陈耀丽, 俞龙春, 钱悦, 等. 大尖囊蝴蝶兰内生真菌和细菌的分离与鉴定. 热带生物学报, 2019, 10(4): 372-379 [Chen Y-L, Yu L-C, Qian Y, et al. Isolation and identification of endophytic fungi and bacteria from Phalaenopsis deliciosa. Journal of Tropical Biology, 2019, 10(4): 372-379] [13] 石晶盈, 陈维信, 刘爱媛. 植物内生菌及其防治植物病害的研究进展. 生态学报, 2006, 26(7): 2395-2401 [Shi J-Y, Chen W-X, Liu A-Y. Advances in the study of endophytes and their effects on control of plant diseases. Acta Ecologica Sinica, 2006, 26(7): 2395-2401] [14] 向立刚, 汪汉成, 郭珍妮, 等. 黑胫病感染对烟草茎秆及根际土壤真菌群落结构的影响. 菌物学报, 2019, 38(12): 2099-2111 [Xiang L-G, Wang H-C, Guo Z-N, et al. The influence of black shank disease infection on fungal community structure of rhizosphere soil and stem of tobacco plants. Mycosystema, 2019, 38(12): 2099-2111] [15] 谢宪, 梁军, 朱彦鹏, 等. 赤松纯林不同松枯梢病病级针叶的内生真菌多样性及群落结构. 林业科学, 2020, 56(9): 51-57 [Xie X, Liang J, Zhu Y-P, et al. Diversity and community structure of endophytic fungi in the pure forest of Pinus densiflora infected by different incidences of Sphaeropsis sapinea. Scientia Silvae Sinicae, 2020, 56(9): 51-57] [16] Takemoto S, Masuya H, Tabata M. Endophytic fungal communities in the bark of canker-diseased Toxicodendron vernicifluum. Fungal Ecology, 2014, 7: 1-8 [17] 吴林坤, 陈军, 杨波, 等. 地黄连作对叶际细菌群落结构及多样性的影响. 应用生态学报, 2019, 30(10): 3509-3517 [Wu L-K, Chen J, Yang B, et al. Effects of Rehmannia glutinosa consecutive monoculture on the community structure and diversity of phyllosphere bacteria. Chinese Journal of Applied Ecology, 2019, 30(10): 3509-3517] [18] 卢宝慧, 高成林, 赵玥, 等. 运用高通量测序技术分析人参不同栽培模式根际土壤微生物多样性. 东北林业大学学报, 2021, 49(3): 113-119 [Lu B-H, Gao C-L, Zhao Y, et al. Panax ginseng rhizosphere microorganism diversity in different cultivation modes by high-throughput sequencing technology. Journal of Northeast Forestry University, 2021, 49(3): 113-119] [19] Jiang J, Song Z, Yang X, et al. Microbial community analysis of apple rhizosphere around Bohai Gulf. Scientific Reports, 2017, 7(1): 8918, doi: 10.1038/s41598-017-08398-9 [20] 顾美英, 古丽尼沙·沙依木, 张志东, 等. 黑果枸杞不同组织内生细菌群落多样性. 微生物学报, 2021, 61(1):152-166 [Gu M-Y, Gulinisha SYM, Zhang Z-D, et al. Diversity and function analysis of endophytic bacterial community in different tissues of Lycium ruthenicum Murr. Acta Microbiologica Sinica, 2021, 61(1): 152-166] [21] 徐扬, 张冠初, 丁红, 等. 干旱与盐胁迫对花生根际土壤细菌群落结构和花生产量的影响. 应用生态学报, 2020, 31(4): 1305-1313 [Xu Y, Zhang G-C, Ding H, et al. Effects of salt and drought stresses on rhizosphere soil bacterial community structure and peanut yield. Chinese Journal of Applied Ecology, 2020, 31(4): 1305-1313] [22] 尹国丽, 李亚娟, 张振粉, 等. 不同草田轮作模式土壤养分及细菌群落组成特征. 生态学报, 2020, 40(5): 1542-1550 [Yin G-L, Li Y-J, Zhang Z-F, et al. Characteristics of soil nutrients and bacterial community composition under different rotation patterns in grassland. Acta Ecologica Sinica, 2020, 40(5): 1542-1550] [23] 葛应兰, 孙廷. 马铃薯根际与非根际土壤微生物群落结构及多样性特征. 生态环境学报, 2020, 29(1): 141-148 [Ge Y-L, Sun T. Soil microbial community structure and diversity of potato in rhizosphere and non-rhizosphere soil. Ecology and Environmental Sciences, 2020, 29(1): 141-148] [24] 朱英波, 史凤玉, 张瑞敬, 等. 黑龙江大豆轮作和连作土壤细菌群落多样性比较. 植物保护学报, 2014, 41(4): 403-409 [Zhu Y-B, Shi F-Y, Zhang R-J, et al. Comparison of bacterial diversity in rotational and continuous soybean cropping soils in Heilongjiang. Acta Phytophylacica Sinica, 2014, 41(4): 403-409] [25] Xi H, Shen J, Qu Z, et al. Effects of long-term cotton continuous cropping on soil microbiome. Scientific Reports, 2019, 9(1): 18297 [26] Gao X, Wu Z, Liu R, et al. Rhizosphere bacterial community characteristics over different years of sugarcane ratooning in consecutive monoculture. Biomed Research International, 2019, 11: 4943150, doi: 10.1155/2019/4943150 [27] 伍文宪, 黄小琴, 张蕾, 等. 十字花科作物根肿病对根际土壤微生物群落的影响. 生态学报, 2020, 40(5): 1532-1541 [Wu W-X, Huang X-Q, Zhang L, et al. Crucifer clubroot disease changes the microbial community structure of rhizosphere soil. Acta Ecologica Sinica, 2020, 40(5): 1532-1541] [28] 闫欢, 高芬, 王梦亮, 等. 黄芪根腐病病株和健株根围微生物菌群变化分析. 植物保护, 2020, 46(4): 48-54 [Yan H, Gao F, Wang M-L, et al. Changeso of microbia community in root zone soil of Astragalus membranaceus suffering from root rot disease. Plant Protection, 2020, 46(4): 48-54] [29] Padhi EMT, Maharaj N, Lin SY, et al. Metabolome and microbiome signatures in the roots of citrus affected by Huanglongbing. Phytopathology, 2019, 109: 2022-2032 [30] Tan Y, Cui Y, Li H, et al. Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng during continuous cropping practices. Journal of Basic Microbiology, 2017, 57: 337-344 [31] 杨潇湘, 张蕾, 黄小琴, 等. 基于高通量测序分析大豆和油菜根际微生物群落结构的差异. 应用生态学报, 2019, 30(7): 2345-2351 [Yang X-X, Zhang L, Huang X-Q, et al. Difference of the microbial community structure in the rhizosphere of soybean and oilseed rape based on high-throughput pyrosequencing analysis. Chinese Journal of Applied Ecology, 2019, 30(7): 2345-2351] [32] 李佳文, 赵珮杉, 高广磊, 等. 陕西榆林沙区樟子松根内真菌群落结构和功能群特征. 菌物学报, 2020, 39(10): 1854-1865 [Li J-W, Chao P-S, Gao G-L, et al. Root-associated fungal community structure and functional group of Pinus sylvestri var. mongolica in the desertified lands of Yulin in Shaanxi. Mycosystema, 2020, 39(10): 1854-1865] [33] Gao Z, Han M, Hu Y, et al. Effects of continuous cropping of sweet potato on the fungal community structure in rhizospheric soil. Frontiers in Microbiology, 2019, 2: 2269, doi: 10.3389/fmicb.2019.02269 [34] 向立刚, 郭华, 周浩, 等. 健康与感染青枯病烟株根际土壤与茎秆真菌群落结构与多样性. 植物保护, 2020, 46(1):189-196, 228 [Xiang L-G, Guo H, Zhou H, et al. Fungal community structure and diversity of the rhizosphere soil and stems of healthy and diseased tobacco plants infected with bacterial wilt. Plant Protection, 2020, 46(1): 189-196, 228] [35] 吴佳伟, 杨瑞, 王勇, 等. 贵州草海流域三种不同植被类型根际土壤真菌结构组成和多样性. 菌物学报, 2020, 39(7): 1250-1262 [Wu J-W, Yang R, Wang Y, et al. Community and diversity of rhizosphere soil fungi in three different vegetation types in Caohai Basin, Guizhou Province. Mycosystema, 2020, 39(7): 1250-1262] [36] 叶文雨, 谢序泽, 许钰滢, 等. 基于高通量测序技术分析2种菌草根际土壤真菌群落多样性. 热带作物学报, 2020, 41(3): 556-563 [Ye W-Y, Xie X-Z, Xu Y-Y, et al. High-throughput sequencing analys is of fungal community in rhizosphere soils of two plants for mushroon cultivation (JUNCAO). Chinese Journal of Tropical Crops, 2020, 41(3): 556-563] [37] 王义坤, 苏厚文, 段亚楠, 等. 三种菌肥对连作平邑甜茶根系生长和土壤真菌群落多样性的促进效应. 植物营养与肥料学报, 2020, 26(2): 316-324 [Wang Y-K, Su H-W, Duan Y-N, et al. Improvement of root development of Malus hupehensis Rehd. seedlings and soil fungal diversity under replant condition by three kinds of biofertilizers. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 316-324] [38] 袁源, 黄海辰, 叶丽云, 等. 灵芝连作土壤真菌群落分析. 菌物学报, 2019, 38(12): 2112-2121 [Yuan Y, Huang H-C, Ye L-Y, et al. Analysis of fungal community in continuous cropping soil of Ganoderma lingzhi. Mycosystema, 2019, 38(12): 2112-2121] [39] Song X, Pan Y, Li L, et al. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields. PLoS One, 2018, 13(3): e0193811 [40] 吕宁, 石磊, 刘海燕, 等. 生物药剂滴施对棉花黄萎病及根际土壤微生物数量和多样性的影响. 应用生态学报, 2019, 30(2): 602-614 [Lyu N, Shi L, Liu H-Y, et al. Effects of biological agent dripping on cotton Verticillium wilt and rhizosphere soil microorganism. Chinese Journal of Applied Ecology, 2019, 30(2): 602-614] [41] 王文丽, 李娟, 赵旭. 生物有机肥对连作当归根际土壤细菌群落结构和根腐病的影响. 2019, 30(8): 2813-2821 [Wang W-L, Li J, Zhao X. Effects of biological organic fertilizer on rhisosphere soil bacteria community and root rot diseases of continuous cropping Angelica sinensis. Chinese Journal of Applied Ecology, 2019, 30(8): 2813-2821] |