[1] IPCC. Climate Change 2014: Synthesis Report. Cambridge, UK: Cambridge University Press, 2014 [2] Katz RW, Brown BG. Extreme events in a changing climate: Variability is more important than averages. Climatic Change, 1992, 21: 289-302 [3] 钱维宏, 符娇兰, 张玮玮, 等. 近40年中国平均气候与极值气候变化的概述. 地球科学进展, 2007, 22(7): 673-684 [Qian W-H, Fu J-L, Zhang W-W, et al. Changes in mean climate and extreme climate in China during the last 40 years. Advances in Earth Science, 2007, 22(7): 673-684] [4] IPCC. Summary for Policymakers 2019: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Cambridge, UK: Cambridge University Press, 2019 [5] 高涛. 当前与未来气候条件下中国极端降水时空变化特征研究. 博士论文. 青岛: 中国海洋大学, 2013 [Gao T. Spatiotemporral Variability of Extreme Precipitation Events in China under Current and Future Climate Conditions. PhD Thesis. Qingdao: Ocean University of China, 2013] [6] 马伟东, 刘峰贵, 周强, 等. 1961—2017年青藏高原极端降水特征分析. 自然资源学报, 2020, 35(12): 3039-3050 [Ma W-D, Liu F-G, Zhou Q, et al. Chara-cteristics of extreme precipitation over the Qinghai-Tibet Plateau from 1961 to 2017. Journal of Natural Resources, 2020, 35(12): 3039-3050] [7] Ingram W. Extreme precipitation: Increases all round. Nature Climate Change, 2016, 6: 443-444 [8] Gao L, Huang J, Chen XW, et al. Contributions of na-tural climate changes and human activities to the trend of extreme precipitation. Atmospheric Research, 2018, 205: 60-69 [9] Groisman PY, Knight RW, Easterling DR, et al. Trends in intense precipitation in the climate record. Journal of Climate, 2005, 18: 1326-1350 [10] Gao L, Huang J, Chen XW, et al. Risk of extreme precipitation under nonstationarity conditions during the second flood season in the southeastern coastal region of China. Journal of Hydrometeorology, 2017, 18: 669-681 [11] 陈星任, 杨岳, 何佳男, 等. 近60年中国持续极端降水时空变化特征及其环流因素分析. 长江流域资源与环境, 2020, 29(9): 2068-2081 [Chen X-R, Yang Y, He J-N, et al. Spatio-temporal change of persistent extreme precipitation and the associated circulation causes over China in the last 60 years. Resources and Environment in the Yangtze Basin, 2020, 29(9): 2068-2081] [12] 马齐云, 张继权, 来全, 等. 1960—2014年松嫩草地极端气候事件的时空变化. 应用生态学报, 2017, 28(6): 1769-1778 [Ma Q-Y, Zhang J-Q, Lai Q, et al. Temporal and spatial variations of extreme climatic events in Songnen Grassland, Northeast China during 1960-2014. Chinese Journal of Applied Ecology, 2017, 28(6): 1769-1778] [13] 闵屾, 钱永甫. 中国极端降水事件的区域性和持续性研究. 水科学进展, 2008, 19(6): 763-771 [Min S, Qian Y-F. Regionality and persistence of extreme precipi-tation events in China. Advances in Water Science, 2008, 19(6): 763-771] [14] 武文博, 游庆龙, 王岱. 基于均一化降水资料的中国极端降水特征分析. 自然资源学报, 2016, 31(6): 1015-1026 [Wu W-B, You Q-L, Wang D. Characteristics of extreme precipitation in China based on homogenized precipitation data. Journal of Natural Resources, 2016, 31(6): 1015-1026] [15] 景丞, 陶辉, 王艳君, 等. 基于区域气候模式CCLM的中国极端降水事件预估. 自然资源学报, 2017, 32(2): 266-277 [Jing C, Tao H, Wang Y-J, et al. Projection of extreme precipitation events in China based on regional climate model CCLM. Journal of Natural Resources, 2017, 32(2): 266-277] [16] 顾西辉, 张强, 孔冬冬. 中国极端降水事件时空特征及其对夏季温度响应. 地理学报, 2016, 71(5): 718-730 [Gu X-H, Zhang Q, Kong D-D. Spatiotemporal patterns of extreme precipitation with their responses to summer temperature. Acta Geographica Sinica, 2016, 71(5): 718-730] [17] 孙惠惠, 章新平, 罗紫东, 等. 近53a来长江流域极端降水指数特征. 长江流域资源与环境, 2018, 27(8): 228-239 [Sun H-H, Zhang X-P, Luo Z-D, et al. Analyses on characteristics of extreme precipitation indices in the Yangtze River Basin in the past 53 years. Resources and Environment in the Yangtze Basin, 2018, 27(8): 228-239] [18] Li XH, Hu Q, Zhang Q, et al. Response of rainfall erosivity to changes in extreme precipitation in the Poyang Lake Basin, China. Journal of Soil and Water Conservation, 2020, 75: 537-548 [19] Feng L, Hu CM, Chen XL, et al. Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010. Remote Sensing of Environment, 2012, 121: 80-92 [20] Wang JL, Li ZJ. The ESMD method for climate data analysis. Climate Change Research Letters, 2014, 3: 1-5 [21] Sun FB, Roderick ML, Farquhar GD. Rainfall statistics, stationarity, and climate change. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115: 2035-2310 [22] Zhang XB, Yang F. RClimDex(1.0) User Manual. Vancouver, Canada: Climate Research Branch Environment Canada, 2004 [23] 赵直, 徐晗. 极点对称模态分解下中国新疆温度变化趋势的区域特征. 地理研究, 2014, 33(12): 2358-2366 [Zhao Z, Xu H. The research of temperature varia-tion trends over Xinjiang in China by extreme-point symmetric mode decomposition method. Geographical Research, 2014, 33(12): 2358-2366] [24] Yue S, Wang CY. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resources Research, 2002, 38: 4-1-4-7 [25] Mann HB. Nonparametric tests against trend. Econome-trica, 1945, 13: 245-259 [26] Kendall M, Gibbons JD. Rank Correlation Method. Oxford, UK: Oxford University Press, 1990 [27] Rigby RA, Stasinopoulos DM. Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society Series C: Applied Statistics, 2005, 54: 507-554 [28] 孙鹏, 孙玉燕, 张强, 等. 淮河流域洪水极值非平稳性特征. 湖泊科学, 2018, 30(4): 1123-1137 [Sun P, Sun Y-Y, Zhang Q, et al. Evaluation on non-stationa-rity assumption of annual maximum peak flows during 1956-2016 in the Huaihe River Basin. Journal of Lake Science, 2018, 30(4): 1123-1137] [29] Li XH, Hu Q. Spatiotemporal changes in extreme precipitation and its dependence on topography over the Poyang Lake Basin, China. Advances in Meteorology, 2019, 22: 1-15 [30] Filliben JJ. The probability plot correlation coefficient test for normality. Technometrics, 1975, 17: 111-117 [31] Zhang Q, Xiao MZ, Singh VP, et al. Spatiotemporal variations of temperature and precipitation extremes in the Poyang Lake Basin, China. Theoretical and Applied Climatology, 2015, 124: 855-864 |