应用生态学报 ›› 2024, Vol. 35 ›› Issue (8): 2282-2290.doi: 10.13287/j.1001-9332.202408.031
梁思维1, 刘笑彤2,3, 李英滨2*, 梁文举2
收稿日期:
2024-01-17
接受日期:
2024-06-03
出版日期:
2024-08-18
发布日期:
2025-02-18
通讯作者:
*E-mail: liyingbin@iae.ac.cn
作者简介:
梁思维, 女, 1989年生, 博士。主要从事土壤生态学研究。E-mail: siweiliang0102@163.com
基金资助:
LIANG Siwei1, LIU Xiaotong2,3, LI Yingbin2*, LIANG Wenju2
Received:
2024-01-17
Accepted:
2024-06-03
Online:
2024-08-18
Published:
2025-02-18
摘要: 土壤线虫是地下生态系统的重要组成部分,关注其群落分布、组成结构、生态功能及其与周围环境互作机制的线虫生态学研究,一直是土壤生物学研究的热点。本文系统介绍了土壤线虫多样性高和食性多样的特点,阐述了土壤线虫作为指示生物和模式生物的优点,及其在生物防治、生态系统功能和土壤健康表征上的作用。回顾了近年来国内在土壤线虫生态学方面的研究进展,包括分子生物学鉴定方法、对全球变化的响应、食物网结构功能、地上地下多样性关系和大尺度多样性格局等。探讨了土壤线虫生态学的发展趋势,重点评述了采用高通量测序技术进行线虫分类和定量研究的前景,建立通用分析平台推广土壤线虫研究的必要性,以及加强大尺度土壤线虫调查的重要性。
梁思维, 刘笑彤, 李英滨, 梁文举. 我国土壤线虫生态研究新进展[J]. 应用生态学报, 2024, 35(8): 2282-2290.
LIANG Siwei, LIU Xiaotong, LI Yingbin, LIANG Wenju. Recent research progress of soil nematode ecology in China[J]. Chinese Journal of Applied Ecology, 2024, 35(8): 2282-2290.
[1] Yeates GW, Bongers T, de Goede RGM, et al. Feeding habits in soil nematode families and genera: An outline for soil ecologists. Journal of Nematology, 1993, 25: 315-331 [2] Kibblewhite M, Ritz K, Swift M. Soil health in agricultural systems. Philosophical Transactions of the Royal Society B-Biological Sciences, 2008, 363: 685-701 [3] Liang WJ, Lou YL, Li Q, et al. Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biology and Biochemistry, 2009, 41: 883-890 [4] Guan PT, Zhang XK, Yu J, et al. Variation of soil nematode community composition with increasing sand-fixation year of Caragana microphylla: Bioindication for desertification restoration. Ecological Engineering, 2015, 81: 93-101 [5] Shao YH, Wang ZY, Liu T, et al. Drivers of nematode diversity in forest soils across climatic zones. Philosophical Transactions of the Royal Society B-Biological Sciences, 2023, 290: 20230107 [6] Song DG, Pan KW, Tariq A, et al. Large-scale patterns of distribution and diversity of terrestrial nematodes. Applied Soil Ecology, 2017, 114: 161-169 [7] 刘艳方, 刘攀, 王文颖, 等. 土壤线虫作为生态指示生物的研究进展. 生态科学, 2020, 39(2): 207-214 [8] van den Hoogen J, Geisen S, Routh D, et al. Soil nema-tode abundance and functional group composition at a global scale. Nature, 2019, 572: 194-198 [9] 耿德洲, 黄菁华, 霍娜, 等. 黄土高原半干旱区不同种植年限紫花苜蓿人工草地土壤微生物和线虫群落特征. 应用生态学报, 2020, 31(4): 1365-1377 [10] Liu J, Zhao WQ, He HL, et al. Variations in the community patterns of soil nematodes at different soil depths across successional stages of subalpine forests. Ecological Indicators, 2022, 136: 108624 [11] Zhou J, Xiang YZ, Sheng XJ, et al. Effects of grazing on soil nematodes in grasslands: A global meta-analysis. Journal of Applied Ecology, 2023, 60: 814-824 [12] Liu T, Whalen JK, Ran W, et al. Bottom-up control of fertilization on soil nematode communities differs between crop management regimes. Soil Biology and Biochemistry, 2016, 95: 198-201 [13] Kou XC, Ma NN, Zhang XK, et al. Frequency of stover mulching but not amount regulates the decomposition pathways of soil micro-foodwebs in a no-tillage system. Soil Biology and Biochemistry, 2020, 144: 107789 [14] Hu C, Xia XG, Han XM, et al. Soil nematode abundances were increased by an incremental nutrient input in a paddy-upland rotation system. Helminthologia, 2018, 55: 322-333 [15] 张梦亭, 刘萍, 黄丹丹, 等. 东北黑土线虫群落对长期免耕后土壤扰动的响应. 中国农业科学, 2021, 54(22): 4840-4851 [16] Wu X, Hu H, Li G, et al. Chemical fertilizer reduction combined with organic materials enhances nematode community structure stability. Archives of Agronomy and Soil Science, 2023, 69: 399-416 [17] Yeates GW. Nematodes as soil indicators: Functional and biodiversity aspects. Biology and Fertility of Soils, 2003, 37: 199-210 [18] Chen XY, Daniell TJ, Neilson R, et al. A comparison of molecular methods for monitoring soil nematodes and their use as biological indicators. European Journal of Soil Biology, 2010, 46: 319-324 [19] 王文婷, 夏尚文, 肖海峰, 等. 玉龙雪山自然保护区寒温性针阔混交林腐殖质层和土壤表层线虫群落结构差异. 应用生态学报, 2020, 31(3): 761-768 [20] Qi YW, Sun XH, Peng SC, et al. Effects of fertilization on soil nematode communities in an alpine meadow of Qinghai-Tibet plateau. Frontiers in Ecology and Evolution, 2023, 11: 1122505 [21] Zhang SX, Li Q, Lü Y, et al. Conservation tillage positively influences the microflora and microfauna in the black soil of Northeast China. Soil and Tillage Research, 2015, 149: 46-52 [22] Luo JM, Zhang XK, Kou XC, et al. Effects of residue mulching amounts on metabolic footprints based on production and respiration of soil nematodes in a long-term no-tillage system. Land Degradation and Development, 2021, 32: 2383-2392 [23] Zhang P, Chen SD, Ai Y, et al. Responses of soil nema-tode community to yak grazing intensity in an alpine meadow. Agriculture, Ecosystems and Environment, 2022, 339: 108134 [24] Yang JJ, Wu XF, Chen Y, et al. Combined attributes of soil nematode communities as indicators of grassland degradation. Ecological Indicators, 2021, 131: 108215 [25] Zhang M, Liang WJ, Zhang XK. Soil nematode abundance and diversity in different forest types at Changbai Mountain, China. Zoological Studies, 2012, 51: 619-626 [26] Hou L, Xue HY, Lu J, et al. Effects of fire intensity on soil nematode communities on the Pinus densata forest in southeastern Tibet. Fresenius Environmental Bulletin, 2022, 31: 11151-11161 [27] Zhao J, Wang FM, Li J, et al. Effects of experimental nitrogen and/or phosphorus additions on soil nematode communities in a secondary tropical forest. Soil Biology and Biochemistry, 2014, 75: 1-10 [28] 赵歆, 李鑫玉, 李明浩, 等. 秀丽隐杆线虫模型在记忆和遗忘行为研究中的运用. 生物技术进展, 2023, 13(6): 837-843 [29] Peng DH, Wan DF, Cheng CS, et al. Nematode-specific cadherin CDH-8 acts as a receptor for Cry5B toxin in Caenorhabditis elegans. Applied Microbiology and Biotechnology, 2018, 102: 3663-3673 [30] 华欣, 陈海波, 李杰, 等. 农药对秀丽隐杆线虫毒性效应及其机制的研究进展. 生态毒理学报, 2020, 15(1): 34-43 [31] Jiang YZ, Gaur U, Cao ZB, et al. Quetiapine shortens the lifespan of Caenorhabditis elegans through DOP-2, DAF-2 and RSKS-1. International Journal of Molecular Sciences, 2022, 23: 12927 [32] Zhao YL, Chen JY, Wang R, et al. A review of transgenerational and multigenerational toxicology in the in vivo model animal Caenorhabditis elegans. Journal of Applied Toxicology, 2023, 43: 122-145 [33] Chen HB, Wang C, Li H, et al. A review of toxicity induced by persistent organic pollutants (POPs) and endocrine-disrupting chemicals (EDCs) in the nematode Caenorhabditis elegans. Journal of Environmental Management, 2019, 237: 519-525 [34] 薛夏, 王中华, 李绍建, 等. 探索生命极限的模式生物-南极土壤自由生活线虫Plectus murrayi及其环境适应性特征. 土壤, 2023, 55(5): 925-934 [35] 张晓珂, 梁文举, 李琪. 长白山森林土壤线虫——形态分类与分布格局. 北京: 中国农业出版社, 2013 [36] 陈彤, 曾文慧, 颜珣, 等. 应用昆虫病原线虫防控白蚁的研究现状. 应用昆虫学报, 2022, 59(1): 29-39 [37] 孙洁, 侯艳丽, 许文涛, 等. 不同施用方式下昆虫病原线虫对小地老虎的防治作用. 中国植保导刊, 2023, 43(1): 10-15 [38] 王杰, 戴康, 孔祥鑫, 等. 昆虫病原线虫与环境生物、非生物因素关系的研究进展. 环境昆虫学报, 2021, 43(4): 811-839 [39] Wang X, Wang H, Feng QZ, et al. Desiccation and cold storage of Galleria mellonella cadavers and effects on in vivo production of Steinernema carpocapsae. Pest Management Science, 2014, 70: 895-904 [40] Kong XX, Huang ZH, Gu XH, et al. Dimethyl sulfoxide and ascarosides improve the growth and yields of entomopathogenic nematodes in liquid cultures. Journal of Invertebrate Pathology, 2022, 193: 107800 [41] 郝杰, 杨晴, 李天慧, 等. 一种新的昆虫病原线虫固体培养基及其参数优化研究. 中国植保导刊, 2017, 37(6): 14-18 [42] Bai GY, Xu H, Fu YQ, et al. A comparison of novel entomopathogenic nematode application methods for control of the chive gnat, Bradysia odoriphaga (Diptera: Sciaridae). Journal of Economic Entomology, 2016, 109: 2006-2013 [43] Li XP, Zhu HM, Geisen S, et al. Agriculture erases climate constraints on soil nematode communities across large spatial scales. Global Change Biology, 2020, 26: 919-930 [44] Ferris H, Bongers T, De Goede RGM. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology, 2001, 18: 13-29 [45] Kuzyakov Y. Review: Factors affecting rhizosphere pri-ming effects. Journal of Plant Nutrition and Soil Science, 2002, 165: 382-396 [46] Bonkowski M, Cheng WX, Griffiths BS, et al. Microbial-faunal interactions in the rhizosphere and effects on plant growth. European Journal of Soil Biology, 2000, 36: 135-147 [47] Neher DA. Role of nematodes in soil health and their use as indicators. Journal of Nematology, 2001, 33: 161-168 [48] Bach EM, Ramirez KS, Fraser TD, et al. Soil biodiversity integrates solutions for a sustainable future. Sustaina-bility, 2020, 12: 2662 [49] Pires D, Orlando V, Collett RL, et al. Linking nematode communities and soil health under climate change. Sustainability, 2023, 15: 11747 [50] 梁文举, 董元华, 李英滨, 等. 土壤健康的生物学表征与调控. 应用生态学报, 2021, 32(2): 719-728 [51] Hua E, Zhu YM, Huang DM, et al. Are free-living nematodes effective environmental quality indicators? Insights from Bohai Bay, China. Ecological Indicators, 2021, 127: 107756 [52] Zhao J, Li DJ, Fu SL, et al. Using the biomasses of soil nematode taxa as weighting factors for assessing soil food web conditions. Ecological Indicators, 2016, 60: 310-316 [53] Wang WT, Mishra S, Yang XD. Seasonal difference in soil health indicators mediating multidiversity-multifunctionality relationship depends on body size of soil organi-sms: Evidence from rubber plantation agroforestry system. Soil Biology and Biochemistry, 2023, 178: 108968 [54] Wang XH, Dai ZM, Lin JH, et al. Heavy metal conta-mination collapses trophic interactions in the soil microbial food web via bottom-up regulation. Soil Biology and Biochemistry, 2023, 184: 109058 [55] Yao HF, Li ZP, Geisen S, et al. Degree of urbanization and vegetation type shape soil biodiversity in city parks. Science of the Total Environment, 2023, 899: 166437 [56] Du XF, Li YB, Han X, et al. Using high-throughput sequencing quantitatively to investigate soil nematode community composition in a steppe-forest ecotone. Applied Soil Ecology, 2020, 152: 103562 [57] Gao ZW, Huang J, Gao W, et al. Exploring the effects of warming and nitrogen deposition on desert steppe based on soil nematodes. Land Degradation and Development, 2023, 34: 682-697 [58] 孙翌昕, 李英滨, 李玉辉, 等. 高通量测序技术在线虫多样性研究中的应用. 生物多样性, 2022, 30(12): 200-210 [59] 王楠, 黄菁华, 霍娜, 等.宁南山区不同植被恢复方式下土壤线虫群落特征: 形态学鉴定与高通量测序法比较. 生物多样性, 2021, 29(11): 1513-1529 [60] Sun YX, Du XF, Li YB, et al. Database and primer selections affect nematode community composition under different vegetations of Changbai Mountain. Soil Ecology Letters, 2023, 5: 142-150 [61] 薛蓓, 侯磊, 薛会英. 基于高通量测序分析西藏北部高寒草甸不同深度土壤线虫群落分布特征. 生态学报, 2019, 39(11): 4088-4095 [62] Liu XT, Zhang XK, Tian YJ, et al. Microfauna community assembly and cascading relationship with microflora in cropland ecosystems along a latitudinal gradient. Agriculture, Ecosystems and Environment, 2023, 357: 108678 [63] Gao DD, Moreira-Grez B, Wang KL, et al. Effects of ecosystem disturbance on nematode communities in calcareous and red soils: Comparison of taxonomic metho-ds. Soil Biology and Biochemistry, 2021, 155: 108162 [64] Wang WT, Sun ZH, Mishra S, et al. Body size determines multitrophic soil microbiota community assembly associated with soil and plant attributes in a tropical seasonal rainforest. Molecular Ecology, 2022, 32: 6294-6303 [65] Liu HW, Du XF, Li YB, et al. Organic substitutions improve soil quality and maize yield through increasing soil microbial diversity. Journal of Cleaner Production, 2022, 347: 131323 [66] Zhang GZ, Yang H, Zhang WP, et al. Interspecific interactions between crops influence soil functional groups and networks in a maize/soybean intercropping system. Agriculture, Ecosystems and Environment, 2023, 355: 108595 [67] Rillig MC, Ryo M, Lehmann A, et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science, 2019, 366: 886-890 [68] Chen DM, Lan ZC, Hu SJ, et al. Effects of nitrogen enrichment on belowground communities in grassland: relative role of soil nitrogen availability vs. soil acidification. Soil Biology and Biochemistry, 2015, 89: 99-108 [69] Niu SL, Classen AT, Dukes JS, et al. Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle. Ecology Letters, 2016, 19: 697-709 [70] Song M, Li XM, Jing SS, et al. Responses of soil nema-todes to water and nitrogen additions in an old-field grassland. Applied Soil Ecology, 2016, 102: 53-60 [71] Liu T, Mao P, Shi LL, et al. Contrasting effects of nitrogen deposition and increased precipitation on soil nematode communities in a temperate forest. Soil Biology and Biochemistry, 2020, 148: 107869 [72] Fu G, Shen ZX. Response of alpine soils to nitrogen addition on the Tibetan Plateau: A meta-analysis. Applied Soil Ecology, 2017, 114: 99-104 [73] Cui HW, Liu X, Chen SY, et al. Contrasting responses of nematode composition, richness and biomass to long-term warming. Science of the Total Environment, 2023, 894: 165074 [74] Yan DM, Yan DH, Song XS, et al. Community structure of soil nematodes under different drought conditions. Geoderma, 2018, 325: 110-116 [75] Zhang GG, Sui X, Li Y, et al. The response of soil nematode fauna to climate drying and warming in Stipa breviflora desert steppe in Inner Mongolia, China. Journal of Soils and Sediments, 2020, 20: 2166-2180 [76] Zhou J, Wu JP, Huang JX, et al. A synthesis of soil nematode responses to global change factors. Soil Biology and Biochemistry, 2022, 165: 108538 [77] Hu ZK, Zhu CW, Chen XY, et al. Responses of rice paddy micro-food webs to elevated CO2 are modulated by nitrogen fertilization and crop cultivars. Soil Biology and Biochemistry, 2017, 114: 104-113 [78] Wang JQ, Li M, Zhang XH, et al. Changes in soil nema-tode abundance and composition under elevated [CO2] and canopy warming in a rice paddy field. Plant and Soil, 2019, 445: 425-437 [79] Song YY, Liu JW, Chen FJ. Elevated CO2 not increased temperature has specific effects on soil nematode community either with planting of transgenic Bt rice or non-Bt rice. PeerJ, 2020, 8: e8547 [80] Zhang XK, Ferris H, Mitchell J, et al. Ecosystem servi-ces of the soil food web after long-term application of agricultural management practices. Soil Biology and Biochemistry, 2017, 111: 36-43 [81] Kou XC, Morriën E, Tian YJ, et al. Exogenous carbon turnover within the soil food web strengthens soil carbon sequestration through microbial necromass accumulation. Global Change Biology, 2023, 29: 4069-4080 [82] Guan PT, Zhang XK, Yu J, et al. Soil microbial food web channels associated with biological soil crusts in desertification restoration: The carbon flow from microbes to nematodes. Soil Biology and Biochemistry, 2018, 116: 82-90 [83] Zhong S, Zeng HC, Jin ZQ. Influences of different til-lage and residue management systems on soil nematode community composition and diversity in the tropics. Soil Biology and Biochemistry, 2017, 107: 234-243 [84] Zhang KL, Maltais-Landry G, Liao HL. How soil biota regulate C cycling and soil C pools in diversified crop rotations. Soil Biology and Biochemistry, 2021, 156: 108219 [85] Liu J, Fang K, Kou YP, et al. Variations in the soil micro-food web structure and its relationship with soil C and N mineralization during secondary succession of subalpine forests. Science of the Total Environment, 2023, 879: 163257 [86] Li B, Li YB, Fanin N, et al. Adaptation of soil micro-food web to elemental limitation: Evidence from the forest-steppe ecotone. Soil Biology and Biochemistry, 2022, 170: 108698 [87] Yao ZY, Huang CX, Hu HL, et al. High trophic level organisms and the complexity of soil micro-food webs at aggregate scale regulate carbon accumulation in cropland soils. Agriculture, Ecosystems and Environment, 2024, 360: 108768 [88] Wang B, Wu LJ, Chen DM, et al. Grazing simplifies soil micro-food webs and decouples their relationships with ecosystem functions in grasslands. Global Change Biology, 2020, 26: 960-970 [89] Yuan ZQ, Ali A, Ruiz-Benito P, et al. Above- and below-ground biodiversity jointly regulate temperate forest multifunctionality along a local-scale environmental gradient. Journal of Ecology, 2020, 108: 2012-2024 [90] Wang XT, Xiao S, Yang XL, et al. Dominant plant species influence nematode richness by moderating understory diversity and microbial assemblages. Soil Biology and Biochemistry, 2019, 137: 107566 [91] Wu Y, Chen WJ, Entemake W, et al. Long-term vegetation restoration promotes the stability of the soil micro-food web in the Loess Plateau in North-west China. Catena, 2021, 202: 105293 [92] Li G, Liu T, Whalen JK, et al. Nematodes: An overlooked tiny engineer of plant health. Trends in Plant Science, 2024, 29: 52-63 [93] Hu JW, Hassi U, Gebremikael MT, et al. Root traits explain multitrophic interactions of belowground microfauna on soil nitrogen mineralization and plant producti-vity. Soil Biology and Biochemistry, 2023, 184: 109093 [94] Kitagami Y, Matsuda Y. Effect of ectomycorrhizal fungal species on population growth and food preference of a fungivorous nematode. Mycorrhiza, 2022, 32: 95-104 [95] Song HX, Hou X, Cui HW, et al. Long-term plant community removal alters soil nematode communities mainly through the trophic cascading effects of fungal channel. Journal of Soil Science and Plant Nutrition, 2023, 23: 6696-6706 [96] Liu T, Hu F, Li HX. Spatial ecology of soil nematodes: Perspectives from global to micro scales. Soil Biology and Biochemistry, 2019, 137: 107565 [97] Wu JH, Chen HL, Zhang YZ. Latitudinal variation in nematode diversity and ecological roles along the Chinese coast. Ecology and Evolution, 2016, 6: 8018-8027 [98] Xiong D, Wei CZ, Wubs ERJ, et al. Nonlinear responses of soil nematode community composition to increa-sing aridity. Global Ecology and Biogeography, 2020, 29: 117-126 |
[1] | 江婷, 付道猛, 张万娜, 邹怡, 肖海军. 农田景观格局对害虫天敌生态控害功能的调控作用 [J]. 应用生态学报, 2019, 30(7): 2511-2520. |
[2] | 杜晓芳, 李英滨, 刘芳, 宿晓琳, 李琪. 土壤微食物网结构与生态功能 [J]. 应用生态学报, 2018, 29(2): 403-411. |
[3] | 缪建群, 王志强, 杨文亭, 孙松, 黄国勤. 崇义客家梯田生态系统服务功能 [J]. 应用生态学报, 2017, 28(5): 1642-1652. |
[4] | 毛德华1**,胡光伟1,刘慧杰1,李正最2,李志龙1,谭子芳1. 基于能值分析的洞庭湖区退田还湖生态补偿标准 [J]. 应用生态学报, 2014, 25(2): 525-532. |
[5] | 李 芬;孙然好;杨丽蓉;陈利顶. 基于供需平衡的北京地区水生态服务功能评价 [J]. 应用生态学报, 2010, 21(05): 1146-1152. |
[6] | 李锋, 王如松. 城市绿色空间生态服务功能研究进展 [J]. 应用生态学报, 2004, (3): 527-531. |
[7] | 李锋, 王如松. 城市绿色空间生态服务功能研究进展 [J]. 应用生态学报, 2004, (3): 527-531. |
[8] | 李锋 王如松. 城市绿色空间生态服务功能研究进展 [J]. 应用生态学报, 2004, 15(03): 527-531 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||