[1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[EB/OL]. (2014-04-17) [2023-09-05]. https://www.gov.cn [2] Shi A, Shao YF, Zhao KL, et al. Long-term effect of E-waste dismantling activities on the heavy metals pollution in paddy soils of southeastern China. Science of the Total Environment, 2020, 705: 135971 [3] 杨微, 王红艳, 于开源, 等. 高浓度镉、锌及其复合作用对烟草抗氧化系统的影响. 应用生态学报, 2017, 28(6): 1948-1954 [4] Shi A, Hu Y, Zhang X, et al. Biochar loaded with bacteria enhanced Cd/Zn phytoextraction by facilitating plant growth and shaping rhizospheric microbial community. Environmental Pollution, 2023, 327: 121559 [5] 叶俊, 任大军, 张晓晴, 等. 中国部分林地土壤重金属含量特征及污染评价. 科学技术与工程, 2020, 20(6): 2507-2514 [6] 焦艳金, 陈志强, 张巧玲. 福建红壤侵蚀区土壤重金属污染特征及马尾松富集. 福建师范大学学报: 自然科学版, 2020, 36(3): 99-106 [7] Sousa NR, Ramos MA, Marques APGC, et al. The effect of ectomycorrhizal fungi forming symbiosis with Pinus pinaster seedlings exposed to cadmium. Science of the Total Environment, 2012, 414: 63-67 [8] Smith SE, Read DJ. Mycorrhizal Symbiosis. London, UK: Academic Press, 2010 [9] Khan AG, Kuek C, Chaudhry TM, et al. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 2000, 41: 197-207 [10] Bellion M, Courbot M, Jacob C, et al. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiology Letters, 2006, 254: 173-181 [11] 王美元. 外生菌根真菌提高柳树耐受及富集Cd的能力研究. 硕士论文. 济南: 济南大学, 2021 [12] Yu PY, Sun YP, Huang ZL, et al. The effects of ectomycorrhizal fungi on heavy metals’ transport in Pinus massoniana and bacteria community in rhizosphere soil in mine tailing area. Journal of Hazardous Materials, 2020, 381: 121203 [13] Fernandez CW, McCormack ML, Hill JM, et al. On the persistence of Cenococcum geophilum ectomycorrhizas and its implications for forest carbon and nutrient cycles. Soil Biology and Biochemistry, 2013, 65: 141-143 [14] Zhang TX, Zhang PP, Pang WB, et al. Increased tole-rance of Massion’s pine to multiple-toxic-metal stress mediated by ectomycorrhizal fungi. Plants, 2023, 12: 3179 [15] 陈立红, 乌仁陶格斯, 王亭, 等. 土生空团菌的遗传多样性分析. 菌物学报, 2014, 33(3): 738-745 [16] Gonçalves SC, Portugal A, Gonçalves MT, et al. Gene-tic diversity and differential in vitro responses to Ni in Cenococcum geophilum isolates from serpentine soils in Portugal. Mycorrhiza, 2007, 17: 677-686 [17] Shi YY, Yan TY, Yuan C, et al. Comparative physiological and transcriptome analysis provide insights into the response of Cenococcum geophilum, an ectomycorrhizal fungus to cadmium stress. Journal of Fungi, 2022, 8: 724 [18] Zou J, Hu W, Li YX, et al. Screening of drought resis-tance indices and evaluation of drought resistance in cotton (Gossypium hirsutum L.). Journal of Integrative Agriculture, 2020, 19: 495-508 [19] White PJ, Brown PH. Plant nutrition for sustainable development and global health. Annals of Botany, 2010, 105: 1073-1080 [20] Van TKK, Colpaert JV, Vangronsveld J. Ectomycorrhizal protection of Pinus sylvestris against copper toxicity. New Phytologist, 2001, 150: 203-213 [21] 郭伟, 郝汉, 张伟浩, 等. 外生菌根真菌通过调节离子平衡提高蒙古栎耐盐性. 应用生态学报, 2022, 33(12): 3303-3311 [22] Fernández-fuego D, Keunen E, Cuypers A, et al. Mycorrhization protects Betula pubescens Ehr. from metal-induced oxidative stress increasing its tolerance to grow in an industrial polluted soil. Journal of Hazardous Materials, 2017, 336: 119-127 [23] Zhou Y, Zheng YY, Li PW, et al. Ectomycorrhizal fungi and dark septate endophyte inoculation improve the growth and tolerance of Pinus tabuliformis under cad-mium stress. Pedosphere, 2023, 34: 473-483 [24] 刘婷岩, 郝龙飞, 王续富, 等. 氮沉降及菌根真菌对长白落叶松苗木根系构型及根际酶活性的影响. 植物研究, 2021, 41(1): 145-151 [25] 戴伟红, 邹锋, 江盈, 等. 接种4种外生菌根真菌对‘檀桥’板栗幼苗生长、光合及养分含量的影响. 江西农业大学学报, 2023, 45(2): 311-321 [26] 李快芬. 菌根化马尾松幼苗对铝胁迫的响应. 硕士论文. 贵阳: 贵州大学, 2019 [27] 赵南星. 菌根化马尾松对锰胁迫的响应机制研究. 硕士论文. 杨凌: 西北农林科技大学, 2018 [28] 郭子轩, 王永龙, 武彬蔚, 等. 外生菌根真菌土生空团菌种群遗传多样性与结构研究. 菌物学报, 2021, 40(4): 920-935 [29] Zong K, Huang J, Nara K, et al. Inoculation of ectomycorrhizal fungi contributes to the survival of tree seedlings in a copper mine tailing. Journal of Forest Research, 2015, 20: 493-500 [30] Dauphin B, Pereira M, Kohler A, et al. Cryptic genetic structure and copy-number variation in the ubiquitous forest symbiotic fungus Cenococcum geophilum. Environmental Microbiology, 2021, 23: 6536-6556 [31] 张欣, 王英杰, 豆昕桐, 等. Cd胁迫对2个耐Cd能力不同的小麦品种幼苗生长和生理特征的影响. 天津师范大学学报: 自然科学版, 2020, 40(6): 30-36 [32] 李瑞雪, 金晓玲, 胡希军, 等. 6种含笑属植物抗寒性分析与综合评价. 应用生态学报, 2017, 28(5): 1464-1472 [33] 郝鲜俊, 韩阳, 张又丹, 等. 基于主成分-聚类分析评价接种丛枝菌根真菌对采煤塌陷区土壤质量的影响. 应用与环境生物学报, 2018, 24(4): 789-796 [34] 王绮玉, 刘欢, 仁增旺堆, 等. 藏沙蒿种质材料苗期抗旱性综合评价. 草地学报, 2023, 31(1): 148-156 [35] Van Hees PAW, Rosling A, Essén S, et al. Oxalate and ferricrocin exudation by the extramatrical mycelium of an ectomycorrhizal fungus in symbiosis with Pinus sylvestris. New Phytologist, 2006, 169: 367-378 [36] Luo ZB, Wu C, Zhang C, et al. The role of ectomycorrhizas in heavy metal stress tolerance of host plants. Environmental and Experimental Botany, 2014, 108: 47-62 [37] 张英伟, 柴立伟, 王东伟, 等. Cu和Cd胁迫下接种外生菌根真菌对油松根际耐热蛋白固持重金属能力的影响. 环境科学, 2014, 35(3): 1169-1175 [38] 蒋爽. 兴安落叶松(Larix gmelinii)菌根苗对重金属镉、铜胁迫的生理响应. 硕士论文. 哈尔滨: 东北林业大学, 2022 |