欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2026, Vol. 37 ›› Issue (1): 93-102.doi: 10.13287/j.1001-9332.202601.015

• 研究论文 • 上一篇    下一篇

种植密度与化控时期对北疆带状间作大豆和玉米茎秆抗倒伏特性的影响

李晶晶1, 范文峰1, 梁冰1, 龚静云2, 蒲甜1, 王小春1*, 杨文钰1   

  1. 1四川农业大学农学院/农业农村部西南作物生理生态与耕作重点实验室/作物生理生态及栽培四川省重点实验室, 成都 611130;
    2新疆农业科学院农业资源与环境研究所, 乌鲁木齐 830091
  • 收稿日期:2025-03-09 修回日期:2025-11-13 发布日期:2026-07-18
  • 通讯作者: *E-mail: xchwang@sicau.edu.cn
  • 作者简介:李晶晶, 女, 2000年生, 硕士研究生。主要从事玉米高产高效栽培技术与理论研究。E-mail: 2514083828@qq.com
  • 基金资助:
    玉米、大豆高质高效绿色生产关键技术研究及农药新产品研发项目(2022TSYCLJ0047)、国家重点研发计划项目(2022B02043)、大豆-玉米带状复合种植一体化精量铺膜播种机械研发制造推广应用项目(YTHSD2022-15)和玉-豆-畜关键技术研究与集成示范项目(2021YFQ0015)

Influence of planting density and chemical regulation timing on stalk lodging resistance of soybean and maize in strip-intercropping in Northern Xinjiang, China

LI Jingjing1, FAN Wenfeng1, LIANG Bing1, GONG Jingyun2, PU Tian1, WANG Xiaochun1*, YANG Wenyu1   

  1. 1College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Province Key Laboratory of Crop Ecophysiology and Farming System, Chengdu 611130, China;
    2Institute of Agricultural Resources and Environment, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
  • Received:2025-03-09 Revised:2025-11-13 Published:2026-07-18

摘要: 为明确北疆地区种植密度与化学调控时期对大豆-玉米带状间作系统中作物茎秆抗倒伏特性的影响,于2023年在新疆伊犁新源县进行田间试验,设置了3个种植密度:玉米密度9万株·hm-2和大豆密度15万株·hm-2(低密度,A1)、玉米密度10.5万株·hm-2和大豆密度18万株·hm-2(中密度,A2)、玉米密度12万株·hm-2和大豆密度21万株·hm-2(高密度,A3);3个化控处理:清水对照(B1)、玉米7叶展期喷施30%胺鲜·乙烯利(B2)和玉米9叶展期喷施30%胺鲜·乙烯利(B3),测定了作物形态、光合有效辐射(PAR)、倒伏率、碳水化合物含量及产量等指标。结果表明: 1)随种植密度增加,玉米吐丝期的株高、穗位高及茎粗降低,大豆株高无显著变化;化控处理可显著优化株型,B2处理株高降幅最大,与B1相比,玉米株高、穗位高分别降低25.2%、33.8%,大豆株高降低17.1%;密植条件下提早化控可优化玉米穗位系数。2)密度增加使大豆冠层PAR降低,倒伏率增加;化控后,B2和B3处理的大豆冠层PAR较B1增加12.2%~25.3%,倒伏率降低57.7%~94.8%。3)密度增加导致玉米和大豆茎秆强度显著下降,A2、A3较A1分别降低7.0%~15.9%和16.9%~29.9%;玉米茎秆结构性碳水化合物(纤维素、木质素)和非结构性碳水化合物(可溶性糖)含量降低,大豆非结构性碳水化合物含量以A2最高;化控后,作物茎秆强度及碳水化合物含量均增加,B2处理增幅最大,表明化控可提升作物机械强度和碳同化能力。4)A1下B3处理、A2和A3下B2处理作物群体产量增幅较大,较B1分别增加12.2%、17.5%和25.9%。在低密度条件下,9叶展期化控处理通过优化植株生理代谢、促进光合产物的积累与分配提升了群体产量;而在中、高密度条件下,7叶展期化控处理通过改善玉米株型结构(降低株高、穗位高),增加大豆冠层光合有效辐射,同时增强茎秆强度,显著降低倒伏风险,最终实现高产。综合来看,北疆地区大豆-玉米带状间作系统在中密度、玉米7叶展期喷施30%胺鲜·乙烯利的效果最优。

关键词: 大豆-玉米带状间作, 北疆地区, 种植密度, 化控时期, 抗倒伏特性

Abstract: To clarity the impacts of planting density and chemical regulation timing on the lodging resistance of soybean-maize intercropping system in Northern Xinjiang, we conducted a field experiment in 2023 in Xinyuan County, Ili, Xinjiang. There were three planting densities: 90000 and 150000 plants·hm-2 for maize and soybean, respectively (low density, A1), 105000 and 180000 plants·hm-2(medium density, A2), and 120000 and 210000 plants·hm-2(high density, A3) for maize and soybean, respectively. There were three chemical regulation treatments: water control (B1), application of 30% amicarbinil·ethylene liming at seven-leaf stage (B2), and nine-leaf stage (B3) of maize. We measured the crop morphological properties, photosynthetically active radiation (PAR), lodging rate, carbohydrate content, and yield. Results showed that: 1) With the increases of planting density, plant height, ear height, and stem diameter of maize at silking stage decreased, while the height of soybean showed no significant change. Chemical regulation significantly optimized plant structure, with B2 treatment showing the largest reduction. Compared with B1, the height of maize and ear were reduced by 25.2% and 33.8%, respectively, and the height of soybean was decreased by 17.1%. Under dense planting conditions, earlier chemical regulation could optimize maize ear height coefficient. 2) Density increase reduced soybean canopy PAR and increased lodging rate. After chemical regulation, B2 and B3 treatments increased soybean canopy PAR by 12.2%-25.3% and decreased lodging rate by 57.7%-94.8% compared with B1. 3) Density increase significantly reduced stem strength of maize and soybean, with reductions of 7.0%-15.9% for maize and 16.9%-29.9% for soybean when comparing A2 and A3 to A1, respectively; structural (cellulose, lignin) and non-structural (soluble sugar) carbohydrate contents in maize stem decreased, while soybean non-structural carbohydrate content was highest in A2. After chemical regulation, stem strength and carbohydrate content increased, with B2 treatment showing the largest increase, indicating that chemical regulation could enhance crop mechanical strength and carbon assimilation capacity. 4) The crop yield increase was greater under B3 treatment in A1, and B2 treatment in A2 and A3, with increases of 12.2%, 17.5%, and 25.9% compared with B1, respectively. Under low density condition, chemical regu-lation treatment at nine-leaf stage improved yield by optimizing physiological metabolism and promoting the accumulation and distribution of photosynthetic products. Under medium and high density conditions, chemical regulation treatment at the seven-leaf stage achieved high yield by improving maize plant type structure (reducing plant height and ear height), increasing soybean canopy PAR, and simultaneously enhancing stem strength to significantly reduce lodging risk. In summary, the soybean-maize strip intercropping system in Northern Xinjiang performed the best under medium density and spraying 30% amicarbinil·ethylene liming at maize seven-leaf stage.

Key words: strip intercropping of soybean and maize, Northern Xinjiang, planting density, chemical regulation timing, lodging resistance characteristic