植物叶肉导度的测定及计算方法综述
朱凯, 袁凤辉, 关德新, 吴家兵, 王安志
2019, 30(5):
1772-1782.
doi:10.13287/j.1001-9332.201905.002
摘要
(
1346 )
PDF (665KB)
(
792
)
叶肉导度(gm)指叶肉细胞内部的CO2扩散能力,它是叶肉细胞阻力的倒数.光合作用研究的早期,研究者们多将叶肉细胞对CO2的扩散阻力视为零,即假定gm无穷大,而忽略了其对光合作用的限制.但近来的研究表明,gm是有限的,并随着环境条件的改变而发生变化,此外,gm的大小直接决定了CO2在叶片内的扩散量,进而影响到植物光合效率的高低.因此,gm的估算对于植物光合能力的评估意义重大.目前,气体交换与叶绿素荧光相结合法、曲线拟合法以及瞬时碳同位素(13CO2)辨别法已经成为植物gm估测的3种常用方法,但国内针对这3种方法原理及其优缺点介绍的文献极少,阐述这3种方法的原理、过程并比较分析其优缺点就显得尤为必要.本文综合了相关文献,从原理、推导过程及优缺点3方面对上述3种gm估测方法进行了详细介绍.结果表明: 曲线拟合法虽然易于理解,便于操作,但其拟合模型因光合作用的发生状态不同而不同,需要研究者对光合作用不同状态进行严格划分,不利于广泛推广应用;瞬时碳同位素(13CO2)辨别法虽然提高了结果的准确性,但其测定过程比较复杂,对试验操作的要求比较严格,同时该方法对试验误差的敏感性较差,可靠性不高.相较上述两种方法,气体交换与叶绿素荧光相结合法的可操作性更强,可靠性更高,更利于多处理多重复的大样本的观测分析,叶绿素荧光技术的使用,既简化了试验步骤,又降低了试验过程的偶然误差,增加了观测结果的科学性;此外,叶绿素荧光技术还能为叶片提供饱和脉冲活化能,从而最大限度地激发叶片的光合潜能,但该方法也存在很多问题,比如,为了提高叶片叶绿素荧光参数的准确程度,试验中需要使用较低的气体流速,而流速的降低又会增大气体扩散泄漏的风险,所以该方法对选择合理气体流速的要求很高. 综合来看,气体交换与叶绿素荧光相结合法在植物gm的实际测定中的认可度最高,使用最广泛.