Chinese Journal of Applied Ecology ›› 2020, Vol. 31 ›› Issue (2): 685-694.doi: 10.13287/j.1001-9332.202002.032
• Reviews • Previous Articles
WEI Guang-ling1,2, ZHANG Shi-chun3, CAI Zhong-hua4, ZHOU Jin4*
Received:
2019-07-23
Online:
2020-02-15
Published:
2020-02-15
Contact:
* E-mail: zhou.jin@sz.tsinghua.edu.cn
Supported by:
WEI Guang-ling, ZHANG Shi-chun, CAI Zhong-hua, ZHOU Jin. Research progress and ecological roles of phytoplankton cysts[J]. Chinese Journal of Applied Ecology, 2020, 31(2): 685-694.
[1] | Field CB. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 1998, 281: 237-240 |
[2] | Bell DM, Clarke PJ. Seed-bank dynamics of Eleocharis: Can spatial and temporal variability explain habitat segregation? Australian Journal of Botany, 2004, 52: 119-131 |
[3] | Long RL, Gorecki MJ, Renton M, et al. The ecophy-siology of seed persistence: A mechanistic view of the journey to germination or demise. Biological Reviews, 2015, 90: 31-59 |
[4] | Bravo I, Figueroa RI. Towards an ecological understan-ding of dinoflagellate cyst functions. Microorganisms, 2014, 2: 11-32 |
[5] | Figueroa RI, Garcés E, Bravo I. Comparative study of the life cycles of Alexandrium tamutum and Alexandrium minutum (Gonyaulacales, Dinophyceae) in culture. Journal of Phycology, 2007, 43: 1039-1053 |
[6] | Kremp A, Parrow MW. Evidence for asexual resting cysts in the life cycle of the marine peridinoid dinoflagellate, Scrippsiella hangoei. Journal of Phycology, 2006, 42: 400-409 |
[7] | Versteegh GJM, Blokker P, Bogus KA, et al. Infra red spectroscopy, flash pyrolysis, thermally assisted hydro-lysis and methylation (THM) in the presence of tetra-methylammonium hydroxide (TMAH) of cultured and sediment-derived Lingulodinium polyedrum (Dinoflage-llata) cyst walls. Organic Geochemistry, 2012, 43: 92-102 |
[8] | McQuoid MR, Hobson LA. Diatom resting stages. Journal of Phycology, 1996, 32: 889-902 |
[9] | Kuwata A, Hama T, Takahashi M. Ecophysiological characterization of two life forms, resting spores and resting cells, of a marine planktonic diatom, Chaetoceros pseudocurvisetus, formed under nutrient depletion. Marine Ecology Progress Series, 1993, 102: 245-255 |
[10] | Persson A, Smith BC, Cyronak T, et al. Differences in pigmentation between life cycle stages in Scrippsiella lachrymosa (dinophyceae). Journal of Phycology, 2016, 52: 64-74 |
[11] | Oku O, Kamatani A. Resting spore formation and biochemical composition of the marine planktonic diatom Chaetoceros pseudocurvisetus in culture: Ecological significance of decreased nucleotide content and activation of the xanthophyll cycle by resting spore formation. Marine Biology, 1999, 135: 425-436 |
[12] | Kennaway GM, Lewis JM. An ultrastructural study of hypnozygotes of Alexandrium species (Dinophyceae). Phycologia, 2004, 43: 355-363 |
[13] | Sukenik A, Kaplan-Levy RN, Welch JM, et al. Massive multiplication of genome and ribosomes in dormant cells (akinetes) of Aphanizomenon ovalisporum (Cyanobacteria). ISME Journal, 2012, 6: 670-679 |
[14] | Sukenik A, Maldener I, Delhaye T, et al. Carbon assimilation and accumulation of cyanophycin during the development of dormant cells (akinetes) in the cyanobacterium Aphanizomenon ovalisporum. Frontier in Microbiology, 2015, 6: 1067 |
[15] | Zhukova N. Changes in the lipid composition of Thalas-siosira pseudonana during its life cycle. Russian Journal of Plant Physiology, 2004, 51: 702-707 |
[16] | Kaplan-Levy RN, Hadas O, Sukenik A. Deciphering the mechanisms against oxidative stress in developing and mature akinetes of the cyanobacterium Aphanizomenon ovalisporum. Microbiology, 2015, 161: 1485-1495 |
[17] | Sukenik A, Beardall J, Hadas O. Photosynthetic characterization of developing and mature akinetes of Aphanizomenon ovalisporum (Cyanoprokaryota). Journal of Phycology, 2007, 43: 780-788 |
[18] | Binder BJ, Anderson DM. Biochemtcal composition and metabolic activity of Scrippsiella trochoidea (dinophy-ceae) resting cysts. Journal of Phycology, 1990, 26: 289-298 |
[19] | Rengefors K, Anderson DM, Pettersson K. Phosphorus uptake by resting cysts of the marine dinoflagellate Scrippsiella trochoidea. Journal of Plankton Research, 1996, 18: 1753-1765 |
[20] | Oku O, Kamatani A. Resting spore formation and phosphorus composition of the marine diatom Chaetoceros pseudocurvisetus under various nutrient conditions. Marine Biology, 1995, 123: 393-399 |
[21] | 唐赢中, 胡章喜, 邓蕴彦. 生活史(休眠孢囊)作为甲藻有害藻华年际频发和地理扩散的一种关键机制的研究进展. 海洋科学刊集, 2016, 51(1): 132-154 [Tang Y-Z, Hu Z-X, Deng Y-Y. Characteristical life history (resting cyst) provides a mechanism for recurrence and geographic expansion of harmful algal blooms of dinoflagellates: A review. Studia Marina Sinica, 2016, 51(1): 132-154] |
[22] | Adams NG, Schwenke P, Smith GJ, et al. Microsatellite markers for population genetic applications in the domoic acid-producing diatom Pseudonitzschia australis Frenguelli (Bacillariophyceae). Protist, 2017, 168: 197-205 |
[23] | Klais R, Tamminen R, Kremp A, et al. Decadal-scale changes of dinoflagellates and diatoms in the anomalous baltic sea spring bloom. PLoS One, 2011, 6(6): e21567 |
[24] | Yang HS, Jeon SG, Oh SJ. Survival strategy of dominant diatom Chaetoceros debilis and Leptocylindrus danicus as southwestern parts of East Sea. Journal of the Korean Society of Marine Environment & Safety, 2016, 22: 212-219 |
[25] | Natsuike MK, Yokoyama K, Nishitani G, et al. Germination fluctuation of toxic Alexandrium fundyense and A. pacificum cysts and the relationship with bloom occurrences in Kesennuma Bay, Japan. Harmful Algae, 2017, 62: 52-59 |
[26] | Zonneveld KAF, Susek E. Effects of temperature, light and salinity on cyst production and morphology of Tuberculodinium vancampoae (the resting cyst of Pyrophacus steinii). Review of Palaeobotany and Palynology, 2007, 145: 77-88 |
[27] | Sgrosso S, Esposito F, Montresor M. Temperature and daylength regulate encystment in calcareous cyst-forming dinoflagellates. Marine Ecology Progress Series, 2001, 211: 77-87 |
[28] | Agrawal S. Factors affecting spore germination in algae. Folia Microbiologica, 2009, 54: 273-302 |
[29] | Gu H, Sun J, Kooistra WH, et al. Phylogenetic position and morphology of the caeand cysts of Scrippsiella (Dino-phyceae) species in the east China sea. Journal of Phycology, 2008, 44: 478-494 |
[30] | Kremp A, Oja J, LeTortorec AH, et al. Diverse seed banks favour adaptation of microalgal populations to future climate conditions. Environmental Microbiology, 2016, 18: 679-691 |
[31] | Grigorszky I, Kiss KT, Béres V, et al. The effects of temperature, nitrogen, and phosphorus on the encystment of Peridinium cinctum, Stein (Dinophyta). Hydrobiologia, 2006, 563: 527-535 |
[32] | Harnstrom K, Ellegaard M, Andersen TJ, et al. Hundred years of genetic structure in a sediment revived diatom population. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 4252-4257 |
[33] | Lundholm N, Ribeiro S, Andersen TJ, et al. Buried alive: Germination of up to a century-old marine protist resting stages. Phycologia, 2019, 50: 629-640 |
[34] | Feifel KM, Fletcher SJ, Watson LR, et al. Alexandrium and Scrippsiella cyst viability and cytoplasmic fullness in a 60 cm sediment core from Sequim Bay. Harmful Algae, 2015, 47: 56-65 |
[35] | 王朝晖, 齐雨藻. 甲藻孢囊在长江口海域表层沉积物中的分布. 应用生态学报, 2003, 14(7): 1039-1043 [Wang Z-H, Qi Y-Z. Distribution of dinoflagellate res-ting cysts in surface sediments from the Changjiang River estuary. Chinese Journal of Applied Ecology, 2003, 14(7): 1039-1043] |
[36] | Tang YZ, Gobler CJ. Sexual resting cyst production by the dinoflagellate Akashiwo sanguinea: A potential mechanism contributing to the ubiquitous distribution of a harmful alga. Journal of Phycology, 2015, 51: 298-309 |
[37] | Ellegaard M, Ribeiro S. The long-term persistence of phytoplankton resting stages in aquatic ‘seed banks’. Biological Reviews, 2018, 93: 166-183 |
[38] | Shikata T, Nagasoe S, Matsubara T, et al. Encystment and excystment of Gyrodinium instriatum Freudenthal et Lee. Journal of Oceanography, 2008, 64: 355-365 |
[39] | Figueroa RI, Vazquez JA, Massanet A, et al. Interactive effects of salinity and temperature on planozygote and cyst formation of Alexandrium minutum (Dinophy-ceae) in culture. Journal of Phycology, 2011, 47: 13-24 |
[40] | 郑磊, 齐雨藻. 赤潮甲藻孢囊研究综述. 暨南大学学报:自然科学与医学版, 1995, 16(1): 137-149 [Zheng L, Qi Y-Z. A review of dinoflagellate cyst. Journal of Jinan University: Natural Science & Medicine, 1995, 16(1): 137-149] |
[41] | 曹宇, 张玉娟, 王朝晖. 氮磷限制对锥状斯氏藻形成的作用. 生态科学, 2006, 25(1): 17-20 [Cao Y, Zhang Y-J, Wang Z-H. Effects of nitrogen and phosphorus limitation on cyst formation of Scrippsiella tro-choidea. Ecological Science, 2006, 25(1): 17-20] |
[42] | Chen T, Liu Y, Song S, et al. Characterization of the parasitic dinoflagellate Amoebophrya sp. infecting Aka-shiwo sanguinea in coastal waters of China. Journal of Eukaryotic Microbiology, 2018, 65: 448-457 |
[43] | Anderson DM, Alpermann TJ, Cembella AD, et al. The globally distributed genus Alexandrium: Multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae, 2012, 14: 10-35 |
[44] | Ellegaard M, Ribeiro S, Lundholm N, et al. Using the sediment archive of living dinoflagellate cysts and other protist resting stages to study temporal population dynamics// Marret F, Lewis JM, Bradley L, eds. Biological and Geological Perspectives of Dinoflagellates. London: Geological Society of London, 2013: 149-153 |
[45] | Kremp A, Anderson DM. Factors regulating germination of resting cysts of the spring bloom dinoflagellate Scrippsiella hangoei from the northern Baltic Sea. Journal of Plankton Research, 2000, 22: 1311-1327 |
[46] | Hargrave B, Holmer M, Newcombe C. Towards a classification of organic enrichment in marine sediments based on biogeochemical indicators. Marine Pollution Bulletin, 2008, 56: 810-824 |
[47] | Fistarol GO, Legrand C, Rengefors K, et al. Temporary cyst formation in phytoplankton: A response to allelopathic competitors? Environmental Microbiology, 2004, 6: 791-798 |
[48] | Chambouvet A, Alves-de-Souza C, Cueff V, et al. Interplay between the parasite Amoebophrya sp. (Alveolata) and the cyst formation of the red tide dinoflagellate Scrippsiella trochoidea. Protist, 2011, 162: 637-649 |
[49] | 肖咏之, 齐雨藻, 王朝晖, 等. 大亚湾锥状斯氏藻赤潮及其与孢囊的关系. 海洋科学, 2001, 25(9): 50-54 [Xiao Y-Z, Qi Y-Z, Wang Z-H, et al. The relationship between Scrippsiella trochoidea red tide and cysts in the Daya Bay. Marine Science, 2001, 25(9): 50-54] |
[50] | Moore SK, Bill BD, Hay LR, et al. Factors regulating excystment of Alexandrium in Puget Sound, WA, USA. Harmful Algae, 2015, 43: 103-110 |
[51] | Murray SA, Suggett DJ, Doblin MA, et al. Unravelling the functional genetics of dinoflagellates: A review of approaches and opportunities. Perspectives in Phycology, 2016, 3: 37-52 |
[52] | Lin S, Cheng S, Song B, et al. The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science, 2015, 350: 691-694 |
[53] | 孟繁蔷. 氮磷限制条件下亚历山大藻孢子形成的转录机制. 博士论文. 北京: 清华大学, 2019 [Meng F-Q. Transcription Mechanism of Sporulation in Alexandria sp. under Nitrogen and Phosphorus Limited Conditions. PhD Thesis. Beijing: Tsinghua University, 2019] |
[54] | Footitt S, Douterelo-Soler I, Clay H, et al. Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 20236-20241 |
[55] | Wang X, Replogle A, Davis EL, et al. The tobacco Cel7 gene promoter is auxin-responsive and locally induced in nematode feeding sites of heterologous plants. Molecular Plant Pathology, 2007, 8: 423-436 |
[56] | Millar AA, Jacobsen JV, Ross JJ, et al. Seed dormancy and ABA metabolism in Arabidopsis and barley: The role of ABA 8′-hydroxylase. The Plant Journal, 2006, 45: 942-954 |
[57] | Okamoto M, Kuwahara A, Seo M, et al. CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physio-logy, 2006, 141: 97-107 |
[58] | Balzer I, Hardeland R. Photoperiodism and effects of indoleamines in a unicellular alga, Gonyaulax polyedra. Science, 1991, 253: 795-797 |
[59] | Balzer I, Hardeland R. Stimulation of bioluminescence by 5-methoxylated indoleamines in the dinoflagellate, Gonyaulax polyedra. Comparative Biochemistry and Phy-siology Part C: Comparative Pharmacology, 1991, 98: 395-397 |
[60] | Deng Y, Hu Z, Ma Z, et al. Validation of reference genes for gene expression studies in the dinoflagellate Akashiwo sanguinea by quantitative real-time RT-PCR. Acta Oceanologica Sinica, 2016, 35: 106-113 |
[61] | Childs DZ, Metcalf CJ, Rees M. Evolutionary bet-hed-ging in the real world: Empirical evidence and challenges revealed by plants. Proceedings of the Royal Society B: Biological Sciences, 2010, 277: 3055-3064 |
[62] | Tielbörger K, Petruu M, Lampei C. Bet-hedging germination in annual plants: A sound empirical test of the theoretical foundations. Oikos, 2012, 121: 1860-1868 |
[63] | Tesson SVM, Skjoth CA, Santl-Temkiv T, et al. Airborne microalgae: Insights, opportunities, and challenges. Applied and Environmental Microbiology, 2016, 82: 1978-1991 |
[64] | Kristiansen J. Dispersal of freshwater algae: A review. Hydrobiologia, 1996, 336: 151-157 |
[65] | Schlichting Jr H. The importance of airborne algae and protozoa. Journal of the Air Pollution Control Association, 1969, 19: 946-951 |
[66] | Park TG, Salas MF, Bolch CJ, et al. Development of a real-time PCR probe for quantification of the heterotrophic dinoflagellate Cryptoperidiniopsis brodyi (Dinophyceae) in environmental samples. Appllied and Environmental Microbiology, 2007, 73: 2552-2560 |
[67] | Ribeiro S, Amorim A, Andersen TJ, et al. Reconstructing the history of an invasion: The toxic phytoplankton species Gymnodinium catenatum in the Northeast Atlantic. Biological Invasions, 2011, 14: 969-985 |
[68] | Lebret K, Tesson SV, Kritzberg ES, et al. Phylogeography of the freshwater raphidophyte Gonyostomum semen confirms a recent expansion in northern Europe by a single haplotype. Journal of Phycology, 2015, 51: 768-781 |
[69] | Sassenhagen I, Sefbom J, Sall T, et al. Freshwater protists do not go with the flow: Population structure in Gonyostomum semen independent of connectivity among lakes. Environmental Microbiology, 2015, 17: 5063-5072 |
[70] | Rengefors K, Weyhenmeyer GA, Bloch I. Temperature as a driver for the expansion of the microalga Gonyostomum semen in Swedish lakes. Harmful Algae, 2012, 18: 65-73 |
[71] | Ribeiro S, Berge T, Lundholm N, et al. Phytoplankton growth after a century of dormancy illuminates past resi-lience to catastrophic darkness. Nature Communications, 2011, 2: 311, DOI: 10.1038/ncomms1314 |
[72] | Nagao R, Takahashi S, Suzuki T, et al. Comparison of oligomeric states and polypeptide compositions of fuco-xanthin chlorophyll a/c-binding protein complexes among various diatom species. Photosynthesis Research, 2013, 117: 281-288 |
No related articles found! |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 523
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 630
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||