Chinese Journal of Applied Ecology ›› 2021, Vol. 32 ›› Issue (7): 2514-2524.doi: 10.13287/j.1001-9332.202107.030
• Original Articles • Previous Articles Next Articles
ZHANG Wei-ping1, HU Yun-yun2, LI Zhi-hua2, FENG Xue-ping1, LI Deng-wu1*
Received:
2021-01-15
Revised:
2021-04-19
Online:
2021-07-15
Published:
2022-01-15
Contact:
*dengwuli@163.com
Supported by:
ZHANG Wei-ping, HU Yun-yun, LI Zhi-hua, FENG Xue-ping, LI Deng-wu. Predicting suitable distribution areas of Juniperus przewalskii in Qinghai Province under climate change scenarios[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2514-2524.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202107.030
[1] 中国气象局气候变化中心. 中国气候变化蓝皮书(2020). 北京: 科学出版社, 2020 [Climate Change Center of China Meteorological Administration. Blue Book on Climate Change in China (2020). Beijing: Science Press, 2020] [2] Thomas CD, Cameron A, Green RE, et al. Extinction risk from climate change. Nature, 2004, 427: 145-148 [3] Li XH, Tian HD, Wang Y, et al. Vulnerability of 208 endemic or endangered species in China to the effects of climate change. Regional Environmental Change, 2013, 13: 843-852 [4] Schneider SH, Root TL. Wildlife Responses to Climate Change. Washington DC: Island Press, 2002 [5] Alberto FJ, Aitken SN, Alia R, et al. Potential for evolutionary responses to climate change evidence from tree populations. Global Change Biology, 2013, 19: 1645-1661 [6] Xu HJ, Wang XP, Zhao CY, et al. Diverse responses of vegetation growth to meteorological drought across climate zones and land biomes in northern China from 1981 to 2014. Agricultural and Forest Meteorology, 2018, 262: 1-13 [7] Bellard C, Bertelsmeier C, Leadley P, et al. Impacts of climate change on the future of biodiversity. Ecology Letters, 2012, 15: 365-377 [8] Mckenney DW, Pedlar JH, Lawrence K, et al. Potential impacts of climate change on the distribution of North American trees. Bioscience, 2007, 57: 939-948 [9] 冉巧, 卫海燕, 赵泽芳, 等. 气候变化对孑遗植物银杉的潜在分布及生境破碎度的影响. 生态学报, 2019, 39(7): 2481-2493 [Ran Q, Wei H-Y, Zhao Z-F, et al. Impact of climate change on the potential distribution and habitat fragmentation of the relict plant Cathaya argyrophylla Chun et Kuang. Acta Ecologica Sinica, 2019, 39(7): 2481-2493] [10] 贾翔, 马芳芳, 周旺明, 等. 气候变化对阔叶红松林潜在地理分布区的影响. 生态学报, 2017, 37(2): 464-473 [Jia X, Ma F-F, Zhou W-M, et al. Impacts of climate change on the potential geographical distribution of broadleaved Korean pine (Pinus koraiensis) forests. Acta Ecologica Sinica, 2017, 37(2): 464-473] [11] 吕振刚, 李文博, 黄选瑞, 等. 气候变化情景下河北省3个优势树种适宜分布区预测. 林业科学, 2019, 55(3): 13-21 [Lyu Z-G, Li W-B, Huang X-R, et al. Predicting suitable distribution area of three dominant tree species under climate change scenarios in Hebei Province. Scientia Silvae Sinicae, 2019, 55(3): 13-21] [12] Hu XG, Jin YQ, Wang XR. et al. Predicting impacts of future climate change on the distribution of the widespread conifer Platycladus orientalis. PLoS One, 2015, 10(7): e0132326 [13] 崔雪晴, 马红萍, 黄桂林, 等. 青海省6个主要树种适宜造林地研究. 林业资源管理, 2016(4): 74-78 [Cui X-Q, Ma H-P, Huang G-L, et al. Research on the land suitable for planting 6 major tree species in Qinghai Province. Forest Resources Management, 2016(4): 74-78] [14] 林莎, 王莉, 李远航, 等. 青藏高原东北缘黄土区典型立地人工林分土壤水分特性研究. 生态学报, 2019, 39(18): 6610-6621 [Lin S, Wang L, Li Y-H. et al. Soil moisture characteristics of typical standing artificial forests in loess area of the northeastern Tibetan Plateau. Acta Ecologica Sinica, 2019, 39(18): 6610-6621] [15] 文陇英, 陈拓, 张满效, 等. 不同生境下祁连圆柏叶片色素和稳定碳同位素组成的变化. 冰川冻土, 2010, 32(4): 823-828 [Wen L-Y, Chen T, Zhang M-X, et al. Variations of pigments and stable-carbon isotope ratios in Sabina przewalskii under different environments. Journal of Glaciology and Geocryology, 2010, 32(4): 823-828] [16] 高静, 单鸣秋, 丁安伟, 等. 柏科药用植物研究进展. 中药材, 2008, 31(11): 1765-1769 [Gao J, Shan M-Q, Ding A-W, et al. Advances in medicinal plants of Cupressaceae. Journal of Chinese Medicinal Materials, 2008, 31(11): 1765-1769] [17] 刘喜梅. 青海祁连圆柏挥发性成分分析及木材性质研究. 硕士论文. 哈尔滨: 东北林业大学, 2014 [Liu X-M. Study on Analysis of the Volatile Constituents and the Wood Property of Sabina przewalskii in Qinghai Pro-vince. Master Thesis. Harbin: Northeast Forestry University, 2014] [18] 高贤良. 祁连圆柏和青海云杉坡向分布差异的生理生态适应机制. 硕士论文. 兰州:兰州大学, 2011 [Gao X-L. Ecophysiological Adaptation of Juniperus przewalskii and Picea crassifolia to the Different Slopes. Master Thesis. Lanzhou: Lanzhou University, 2011] [19] Datsenko NM, Ivashchenko NN, Sonechkin DM, et al. Quantitative analysis of the tree-ring width record features essential for paleoclimatic reconstructions. Doklady Earth Sciences, 2010, 434: 1410-1413 [20] Zhang JZ, Gou XH, Zhang YX, et al. Forward modeling analyses of Qilian juniper (Sabina przewalskii) growth in response to climate factors in different regions of the Qilian Mountains, northwestern China. Trees, 2016, 30: 175-188 [21] 徐生旺. 祁连圆柏育苗造林技术研究. 硕士论文. 杨凌: 西北农林科技大学, 2007 [Xu S-W. Qilian Juniper Nursery Afforestation Technology Extension. Master Thesis. Yangling: Northwest A&F University, 2007] [22] 刘喜梅, 李海朝. 2个地区祁连圆柏叶挥发油化学成分分析. 林业科学, 2013, 49(10): 149-154 [Liu X-M, Li H-C. Analysis of the chemical constituents in the volatile oils from leaves of Sabina przewalskii in two different regions. Scientia Silvae Sinicae, 2013, 49(10): 149-154] [23] 代子俊, 赵霞, 李冠稳, 等. 2000—2015年青海省植被覆盖的时空变化特征. 西北农林科技大学学报:自然科学版, 2018, 46(7): 54-65 [Dai Z-J, Zhao X, Li G-W, et al. Spatial-temporal variations of vegetation coverage in Qinghai from 2000 to 2015. Journal of NorthwestA&F University: Natural Science, 2018, 46(7): 54-65] [24] 张茜. 祁连圆柏的分子谱系地理学研究. 博士论文. 兰州: 兰州大学, 2008 [Zhang Q. Molecular Phylogeography of Juniperus przewalskii (Cupressaceae). PhD Thesis. Lanzhou: Lanzhou University, 2008] [25] Li SY, Miao LJ, Jiang ZH, et al. Projected drought conditions in northwest China with CMIP6 models under combined SSPs and RCPs for 2015-2099. Advances in Climate Change Research, 2020, 11: 210-217 [26] Pearson RG, Raxworthy CJ, Nakamura M, et al. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 2007, 34: 102-117 [27] 戎战磊. 气候变化对祁连山优势物种分布和植被格局的影响. 博士论文. 兰州: 兰州大学, 2019 [Rong Z-L. Effects of Climate Change on Distribution of Dominant Species and Pattern of Vegetation in Qilian Mountains. PhD Thesis. Lanzhou: Lanzhou University, 2019] [28] Morales NS, Fernandez IC, Baca-Gonzalez V. Maxent's parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ, 2017, 5: 3093 [29] Yi YJ, Cheng X, Yang ZF, et al. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecological Engineering, 2016, 92: 260-269 [30] Rong ZL, Zhao CY, Liu JJ, et al. Modeling the effect of climate change on the potential distribution of Qinghai spruce (Picea crassifolia Kom.) in Qilian Mountains. Forests, 2019, 10: 62 [31] Phillips SJ. A Brief Tutorial on Maxent [EB/OL]. (2017-12-12) [2020-12-04]. http://biodiversityinformatics.amnh.org/open_source/maxent/ [32] 麻亚鸿. 基于最大熵模型(MaxEnt)和地理信息系统(ArcGIS)预测藓类植物的地理分布范围: 以广西花屏自然保护区为例. 硕士论文. 上海: 上海师范大学, 2013 [Ma Y-H. Applying MaxEnt and ArcGIS to Predict Mosses Geographic Distribution range: A Case Study of Huaping Nature Reserve, Guangxi. Master Thesis. Shanghai: Shanghai Normal University, 2013] [33] 中国科学院中国植物志编辑委员会. 中国植物志. 北京: 科学出版社, 1993 [Editorial Committee of Flora of China, Chinese Academy of Sciences. Flora of China. Beijing: Science Press, 1993] [34] 青海木本植物志编辑委员会. 青海木本植物志. 西宁: 青海人民出版社, 1987 [Qinghai Woody Flora Editorial Committee. Qinghai Woody Flora. Xining: Qinghai People's Press, 1987] [35] Dyderski MK, Paz S, Frelich LE, et al. How much does climate change threaten European forest tree species distributions? Global Change Biology, 2018, 24: 1150-1163 [36] 唐志红, 尉秋实, 刘虎俊, 等. 祁连山东段高寒植被群落特征及其与地形气候因子关系研究. 生态学报, 2020, 40(1): 223-232 [Tang Z-H, Yu Q-S, Liu H-J, et al. Characteristics of alpine vegetation community and its relationship to topographic climate factors in the eas-tern Qilian Mountain. Acta Ecologica Sinica, 2020, 40(1): 223-232] [37] 吴建国. 气候变化对7种乔木植物分布的潜在影响. 植物分类与资源学报, 2011, 33(3): 335-349 [Wu J-G. The potential effects of climate change on the distributions of seven arbors plants in China. Plant Diversity and Resources, 2011, 33(3): 335-349] [38] 郑永宏, 梁尔源, 朱海峰, 等. 不同生境祁连圆柏径向生长对气候变化的响应. 北京林业大学学报, 2008, 30(3): 7-12 [Zheng Y-H, Liang E-Y, Zhu H-F, et al. Response of radial growth of Qilian juniper to climatic change under different habitats. Journal of Beijing Forestry University, 2008, 30(3): 7-12] [39] Peng JF, Gou XH, Chen FH, et al. Climate-growth relationships of Qilian juniper (Sabina przewalskii) in the Anyemaqen Mountains, Tibet. Climate Research, 2010, 41: 31-40 [40] 宋文琦, 朱良军, 张旭, 等. 青藏高原东北部不同降水梯度下高山林线祁连圆柏径向生长与气候关系的比较. 植物生态学报, 2018, 42(1): 66-77 [Song W-Q, Zhu L-J, Zhang X, et al. Comparison of growth-climate relationship of Sabina przewalskii at different timberlines along a precipitation gradient in the northeast Qinghai-Xizang Plateau, China. Chinese Journal of Plant Ecology, 2018, 42(1): 66-77] [41] Yang B, Qin C, Wang JL, et al. A 3500 year tree-ring record of annual precipitation on the northeastern Tibe-tan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 2903-2908 [42] 张瑞波, 袁玉江, 魏文寿, 等. 不同生境和去趋势方法下的祁连圆柏径向生长对气候的响应. 生态学报, 2013, 33(24): 7827-7837 [Zhang R-B, Yuan Y-J, Wei W-S, et al. Responses of Qilian junipers radial growth of different ecological environment and detren-ding method to climate change in Qinghai Province. Acta Ecologica Sinica, 2013, 33(24): 7827-7837] [43] 金敏艳, 李进军, 车宗玺, 等. 祁连山中部祁连圆柏年内径向生长对气候因子的响应. 生态学报, 2020, 40(21): 7699-7708 [Jin M-Y, Li J-J, Che Z-X, et al. Intra-annual radial growth responses of Qilian juniper (Juniperus przewalskii) to climate factors in the central Qilian Mountains, northwest China. Acta Ecologica Sinica, 2020, 40(21): 7699-7708] [44] Guo YK, Wei HY, Lu CY, et al. Predictions of potential geographical distribution and quality of Schisandra sphenanthera under climate change. PeerJ, 2016, 4: e2554 [45] 刘少军, 周广胜, 房世波, 等. 未来气候变化对中国天然橡胶种植气候适宜区的影响. 应用生态学报, 2015, 26(7): 2083-2090 [Liu S-J, Zhou G-S, Fang S-B, et al. Effects of future climate change on climatic suitability of rubber plantation in China. Chinese Journal of Applied Ecology, 2015, 26(7): 2083-2090] [46] 郭彦龙, 卫海燕, 路春燕, 等. 气候变化下桃儿七潜在地理分布的预测. 植物生态学报, 2014, 38(3): 249-261 [Guo Y-L, Wei H-Y, Lu C-Y, et al. Predictions of potential geographical distribution of Sinopodophyllum hexandrum under climate change. Chinese Journal of Plant Ecology, 2014, 38(3): 249-261] [47] Root TL, Price JT, Hall KR, et al. Fingerprints of glo-bal warming on wild animals and plants. Nature, 2003, 421: 57-60 [48] Shafer SL, Bartlein PJ, Thompson RS. Potential changes in the distributions of western North America tree and shrub taxa under future climate scenarios. Ecosystems, 2001, 4: 200-215 [49] 马松梅, 魏博, 李晓辰, 等. 气候变化对梭梭植物适宜分布的影响. 生态学杂志, 2017, 36(5): 1243-1250 [Ma S-M, Wei B, Li X-C, et al. The impacts of climate change on the potential distribution of Haloxylon ammodendron. Chinese Journal of Ecology, 2017, 36(5): 1243-1250] [50] 李宁宁, 张爱平, 张林, 等. 气候变化下青藏高原两种云杉植物的潜在适生区预测. 植物研究, 2019, 39(3): 395-406 [Li N-N, Zhang A-P, Zhang L, et al. Predicting potential distribution of two species of spruce in Qinghai-Tibet Plateau under climate change. Bulletin of Botanical Research, 2019, 39(3): 395-406] [51] Huang JH, Li GQ, Li J, et al. Projecting the range shifts in climatically suitable habitat for Chinese sea buckthorn under climate change scenarios. Forests, 2018, 9: 9 [52] 张晓芹, 李国庆, 杜盛. 未来气候变化对沙枣适宜分布区的影响预测. 应用生态学报, 2018, 29(10): 3213-3220 [Zhang X-Q, Li G-Q, Du S. Predicting the influence of future climate change on the suitable distribution areas of Elaeagnus angustifolia. Chinese Journal of Applied Ecology, 2018, 29(10): 3213-3220] [53] 刘贤德, 王清忠, 孟好军. 祁连圆柏. 北京: 中国科学技术出版社, 2006 [Liu X-D, Wang Q-Z, Meng H-J. 2006. Qilian Juniper (Sabina przewalskii Kom.). Beijing: China Science and Technology Press, 2006] |
[1] | HU Ailian, YANG Juan, LIU Baolin, ZOU Yu. Prediction on the changes in potential suitable areas for mangroves along the coast of Guangxi and the threat from Spartina alterniflora invasion [J]. Chinese Journal of Applied Ecology, 2024, 35(3): 669-677. |
[2] | YANG Zhenkang, YANG Wanrong, LIU Zhijuan, GAO Weida, REN Tusheng, SHEN Yanjun, YANG Xiaoguang. Effects of climate change on wind erosion in the three provinces of Northeast China [J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2429-2435. |
[3] | LENG Peng, WANG Jianqing, TAN Yunyan, SHAO Yajun, WANG Liyan, SHI Xiuzhen, ZHANG Guoyou. Effects of elevated carbon dioxide (CO2)and ozone (O3)concentrations on ectoenzyme activities in rice rhizospheric soil [J]. Chinese Journal of Applied Ecology, 2023, 34(8): 2185-2193. |
[4] | XIA Zhuoyi, SU Jie, YIN Haiwei, KONG Fanhua. Temporal and spatial patterns of habitat of Nipponia nippon in China under the background of climate change [J]. Chinese Journal of Applied Ecology, 2023, 34(6): 1467-1473. |
[5] | ZHANG Da, ZENG Jian, NAMAITI Aihemaiti. Identification of bird conservation gaps of protected areas in high-intensity development area: A case study of Tianjin, China [J]. Chinese Journal of Applied Ecology, 2023, 34(6): 1621-1629. |
[6] | SHAO Mingqin, WANG Jianying, DING Hongxiu. Suitable overwintering habitat simulation and the drivers of their population expansion for Siberian cranes (Grus leucogeranus) in China [J]. Chinese Journal of Applied Ecology, 2023, 34(6): 1639-1648. |
[7] | ZHANG Huisheng, XU Lin, LYU Weiwei, ZHOU Yu, WANG Weifeng, GAO Ruihe, CUI Shaopeng, ZHANG Zhiwei. Multidimensional climatic niche conservatism and invasion risk of Phenacoccus solenopsis [J]. Chinese Journal of Applied Ecology, 2023, 34(6): 1649-1658. |
[8] | WANG Ziwen, YIN Jin, WANG Xing, CHEN Yue, MAO Zikun, LIN Fei, GONG Zongqiang, WANG Xugao. Habitat suitability evaluation of invasive plant species Datura stramonium in Liaoning Province: Based on Biomod2 combination model [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1272-1280. |
[9] | LI Chunbo, ZHANG Yuan, LIU Yage, WU Jiabing, WANG Anzhi. Temporal and spatial variations and influencing factors of gross primary productivity in Changbai Mountain Nature Reserve, China [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1341-1348. |
[10] | BAI Jinke, LI Xiaoyu, WANG Li. Variations of soil quality in the southern Qinghai-Tibet Plateau during 1980s to 2020s [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1367-1374. |
[11] | LING Ziyao, PENG Lihua, WEN Hui. Comparison on the stormwater runoff effects of roof greening in different urban functional areas [J]. Chinese Journal of Applied Ecology, 2023, 34(2): 491-498. |
[12] | CHEN Guoyuan, WANG Cheng, CHEN Hao, SU Yue, YU Ran, XU Xiaohua. Seasonal change of habitat selection of Hydropotes inermis in Yancheng coastal wetlands, China [J]. Chinese Journal of Applied Ecology, 2023, 34(2): 510-518. |
[13] | WANG Jun, LI Guang, YAN Li-juan, LIU Qiang, NIE Zhi-gang. Variation characteristics of climatic potential yield and resources utilization efficiency of maize under the background of climate change in agro-pastoral transitional zone of Gansu, China [J]. Chinese Journal of Applied Ecology, 2023, 34(1): 160-168. |
[14] | XU He-nian, WANG Jiang-lin, PENG Xiao-mei, REN Zi-jian. Responses of radial growth of Juniperus przewalskii to different droughts over the northeastern Tibetan Plateau, China [J]. Chinese Journal of Applied Ecology, 2022, 33(8): 2097-2104. |
[15] | HUANG Hui, ZHENG Chang-ling, ZHANG Jin-song, MENG Ping. Climate changes in southern Taihang Mountain area from 1980 to 2019 [J]. Chinese Journal of Applied Ecology, 2022, 33(8): 2139-2145. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||