[1] Dixon RK, Brown S, Houghton RA, et al. Carbon pools and flux of global forest ecosystem. Science, 1994, 263: 185-190 [2] Schlesinger WH. Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematics, 1977, 8: 51-81 [3] Coûteaux MM, Bottner P, Berg B. Litter decomposition, climate and liter quality. Trends in Ecology and Evolution, 1995, 10: 63-66 [4] Bird JA, Torn MS. Fine roots vs needles: A comparison of 13C and 15N dynamics in a ponderosa pine forest soil. Biogeochemistry, 2006, 79: 361-382 [5] 毕京东, 李玉霖, 宁志英, 等. 科尔沁沙地优势植物叶凋落物分解及碳矿化——凋落物质量的影响. 中国沙漠, 2016, 36(1): 85-92 [6] Cotrufo MF, Soong JL, Horton AJ, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 2015, 8: 776-779 [7] Kuzyakova Y, Friedel JK, Stahr K. Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry, 2000, 32: 1485-1498 [8] Lyu M, Xie J, Vadeboncoeur MA, et al. Simulated leaf litter addition causes opposite priming effects on natural forest and plantation soils. Biology and Fertility of Soils, 2018, 54: 925-934 [9] Lyu M, Nie Y, Giardina CP, et al. Litter quality and site characteristics interact to affect the response of pri-ming effect to temperature in subtropical forests. Func-tional Ecology, 2019, 33: 2226-2238 [10] 张天霖, 蔡章林, 赵厚本, 等. 13C脉冲标记法研究非正常凋落物对土壤有机碳的激发效应. 生态环境学报, 2021, 30(9): 1797-1804 [11] Kuzyakov Y, Bol R. Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar. Soil Biology and Biochemistry, 2006, 38: 747-758 [12] Zhang W, Wang X, Wang S. Addition of external orga-nic carbon and native soil organic carbon decomposition: A meta-analysis. PLoS One, 2013, 8: e54779 [13] Huo C, Luo Y, Cheng W. Rhizosphere priming effect: A meta-analysis. Soil Biology and Biochemistry, 2017, 111: 78-84 [14] Fontaine S, Mariotti A, Abbadie L. The priming effect of organic matter: A question of microbial competition? Soil Biology and Biochemistry, 2003, 35: 837-843 [15] Wang Q, Wang S, He T, et al. Response of organic carbon mineralization and microbial community to leaf litter and nutrient additions in subtropical forest soils. Soil Biology and Biochemistry, 2014, 71: 13-20 [16] Fanin N, Alavoine G, Bertrand I. Temporal dynamics of litter quality, soil properties and microbial strategies as main drivers of the priming effect. Geoderma, 2020, 377: 114576 [17] Fontaine S, Henault C, Aamor A, et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biology and Biochemistry, 2011, 43: 86-96 [18] 王若梦, 董宽虎, 何念鹏, 等. 围封对内蒙古大针茅草地土壤碳矿化及其激发效应的影响. 生态学报, 2013, 33(12): 3622-3629 [19] Schmatz R, Recous S, Aita C, et al. Crop residue qua-lity and soil type influence the priming effect but not the fate of crop residue C. Plant and Soil, 2017, 414: 229-245 [20] 张叶叶, 莫非, 韩娟, 等. 秸秆还田下土壤有机质激发效应研究进展. 土壤学报, 2021, 58(6): 1381-1392 [21] Hu YL, Wang SL, Zeng DH. Effects of single Chinese fir and mixed leaf litters on soil chemical, microbial properties and soil enzyme activities. Plant and Soil, 2006, 282: 379-386 [22] Yang YS, Guo JF, Chen GS, et al. Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China. Plant and Soil, 2009, 323: 153-162 [23] 李晓杰, 刘小飞, 熊德成, 等. 中亚热带杉木人工林和米槠次生林凋落物添加与去除对土壤呼吸的影响. 植物生态学报, 2016, 40(5): 447-457 [24] Han T, Huang W, Liu J, et al. Different soil respiration responses to litter manipulation in three subtropical successional forests. Scientific Reports, 2015, 5: 18166 [25] Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19: 703-707 [26] 张淑民. 植物氮、磷、钾联合测定的快速消煮法. 北京农业大学学报, 1988(3): 63-68 [27] 孔兰芬, 候英, 潘赛群, 等. 重铬酸钾氧化-连续流动法测定烟草中纤维素含量. 江西农业学报, 2022, 30(6): 71-74 [28] Brinkmann K, Blaschke L, Polle A. Comparison of different methods for lignin determination as a basis for calibration of near-infrared reflectance spectroscopy and implications of lignoproteins. Journal of Chemical Ecology, 2002, 28: 2483-2501 [29] 史学军, 潘剑君, 陈锦盈, 等. 不同类型凋落物对土壤有机碳矿化的影响. 环境科学, 2009, 30(6): 1832-1837 [30] 王莹, 梁琼, 栾景雨, 等. 不同人工林凋落物对土壤有机碳矿化特征的影响. 北京农学院学报, 2020, 35(1): 42-49 [31] 张振华, 刘振杰, 陈白洁, 等. 枯落物添加对三江源区退化高寒草甸土壤碳矿化的影响. 草地学报, 2021, 29(增刊1): 156-164 [32] 李英臣, 侯翠翠, 刘月皓, 等. 玉米秸秆不同构件混合分解的非加和效应及其对土壤有机碳矿化的影响. 水土保持通报, 2018, 38(3): 233-239 [33] Fang X, Zhao L, Zhou G, et al. Increased litter input increases litter decomposition and soil respiration but has minor effects on soil organic carbon in subtropical forests. Plant and Soil, 2015, 392: 139-153 [34] Wang L, Chen Y, Zhou Y, et al. Litter chemical traits strongly drove the carbon fractions loss during decomposition across an alpine treeline ecotone. Science of the Total Environment, 2021, 753: 14287 [35] Rasmussen C, Southard RJ, Horwath WR. Litter type and soil minerals control temperate forest soil carbon response to climate change. Global Change Biology, 2008, 14: 2064-2080 [36] 路颖, 李坤, 梁强, 等. 泰山4种优势造林树种叶片凋落物分解对凋落物内细菌群落结构的影响. 生态学报, 2019, 39(9): 3175-3186 [37] Moore TR, Taylor B, Prescott C, et al. Litter decomposition rates in Canadian forests. Global Change Biology, 1999, 5: 75-82 [38] Trofymow JA, Moore TR, Titus B, et al. Rates of litter decomposition over 6 years in Canadian forests: Influence of litter quality and climate. Canadian Journal of Forest Research, 2002, 32: 789-803 |