[1] See CR, Yanai RD, Fisk MC, et al. Soil nitrogen affects phosphorus recycling: Foliar resorption and plant-soil feedbacks in a northern hardwood forest. Ecology, 2015, 96: 2488-2498 [2] Aerts R, Chapin FS. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 2000, 30: 1-67 [3] 张耀艺, 倪祥银, 杨静, 等. 中亚热带同质园不同树种氮磷重吸收及化学计量特征. 应用生态学报, 2021, 32(4): 1154-1162 [4] Lyu XT, Freschet GT, Flynn DFB, et al. Plasticity in leaf and stem nutrient resorption proficiency potentially reinforces plant-soil feedbacks and microscale heterogeneity in a semi-arid grassland. Journal of Ecology, 2012, 100: 144-150 [5] Deng MF, Liu LL, Jiang L, et al. Ecosystem scale trade-off in nitrogen acquisition pathway. Nature Ecology & Evolution, 2018, 2: 1724-1734 [6] 许淼平, 张欣怡, 李文杰, 等. 不同林龄刺槐叶片养分重吸收特征及其对土壤养分有效性的响应. 应用生态学报, 2020, 31(10): 3357-3364 [7] Eckstein RL, Karlsson PS, Weih M. Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate-arctic regions. New Phytologist, 1999, 143: 177-189 [8] 龙靖, 黄耀, 刘占锋, 等. 西沙热带珊瑚岛典型乔木叶片性状和养分再吸收特征. 生态环境学报, 2022, 31(2): 248-256 [9] Killingbeck KT. Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology, 1996, 77: 1716-1727 [10] Wright IJ, Westoby M. Nutrient concentration, resorption and lifespan: Leaf traits of Australian sclerophyll species. Functional Ecology, 2003, 17: 10-19 [11] Ren HY, Kang J, Yuan ZY, et al. Responses of nutrient resorption to warming and nitrogen fertilization in contrasting wet and dry years in a desert grassland. Plant and Soil, 2018, 432: 65-73 [12] Norris MD, Reich PB. Modest enhancement of nitrogen conservation via retranslocation in response to gradients in N supply and leaf N status. Plant and Soil, 2009, 316: 193-204 [13] Yuan ZY, Chen HYH. Negative effects of fertilization on plant nutrient resorption. Ecology, 2015, 96: 373-380 [14] van Heerwaarden LM, Toet S, Aerts R. Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. Journal of Ecology, 2003, 91: 1060-1070 [15] Lu XT, Han XG. Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China. Plant and Soil, 2010, 327: 481-491 [16] Li YL, Kronzucker HJ, Shi WM. Microprofiling of nitrogen patches in paddy soil: Analysis of spatiotemporal nutrient heterogeneity at the microscale. Scientific Reports, 2016, 6: 27064 [17] de Souza CR, Morel JD, Santos ABM, et al. Small-scale edaphic heterogeneity as a floristic-structural complexity driver in Seasonally Dry Tropical Forests tree communities. Journal of Forestry Research, 2020, 31: 2347-2357 [18] 杨昆, 管东生. 林下植被的生物量分布特征及其作用. 生态学杂志, 2006, 25(10): 1252-1256 [19] 张利荣, 李惠通, 郑立津, 等. 不同林龄杉木人工林的林下植被与土壤理化特性. 亚热带农业研究, 2021, 17(3): 165-172 [20] Grime JP. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology, 1998, 86: 902-910 [21] Bardgett RD. Causes and consequences of biological diversity in soil. Zoology, 2002, 105: 367-374 [22] 刘丽, 段争虎, 汪思龙, 等. 不同发育阶段杉木人工林对土壤微生物群落结构的影响. 生态学杂志, 2009, 28(12): 2417-2423 [23] 霍常富, 王朋, 陈龙池, 等. 杉木人工林蓄积量和生态系统碳数量成熟龄的关系. 中南林业科技大学学报, 2018, 38(9): 94-99 [24] 肖复明, 汪思龙, 杜天真, 等. 湖南会同林区杉木人工林呼吸量测定. 生态学报, 2005, 25(10): 2514-2519 [25] Yang QP, Zhang WD, Li RS, et al. Different responses of non-structural carbohydrates in above-ground tissues/organs and root to extreme drought and re-watering in Chinese fir (Cunninghamia lanceolata) saplings. Trees-Structure and Function, 2016, 30: 1863-1871 [26] 张瑛, 徐庆, 高德强, 等. 湖南会同不同林分类型杉木人工林凋落物水文效应. 林业科学研究, 2021, 37(6): 81-89 [27] 李媛良, 汪思龙, 颜绍馗. 杉木人工林剔除林下植被对凋落层养分循环的短期影响. 应用生态学报, 2011, 22(10): 2560-2566 [28] 王清奎, 汪思龙, 冯宗炜. 杉木纯林与常绿阔叶林土壤活性有机碳库的比较. 北京林业大学学报, 2006, 28(5): 1-6 [29] Liu X, Zhao WR, Meng MJ, et al. Comparative effects of simulated acid rain of different ratios of SO42- to NO3- on fine root in subtropical plantation of China. Science of the Total Environment, 2018, 618: 336-346 [30] 王娇, 关欣, 张伟东, 等. 杉木幼苗生物量分配格局对氮添加的响应. 植物生态学报, 2021, 45(11): 1231-1240 [31] Vergutz L, Manzoni S, Porporato A, et al. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 2012, 82: 205-220 [32] Tully KL, Wood TE, Schwantes AM, et al. Soil nutrient availability and reproductive effort drive patterns in nutrient resorption in Pentaclethra macroloba. Ecology, 2013, 94: 930-940 [33] Hofmann K, Heuck C, Spohn M. Phosphorus resorption by young beech trees and soil phosphatase activity as dependent on phosphorus availability. Oecologia, 2016, 181: 369-379 [34] Wang M, Murphy MT, Moore TR. Nutrient resorption of two evergreen shrubs in response to long-term fertilization in a bog. Oecologia, 2014, 174: 365-377 [35] Drenovsky RE, Pietrasiak N, Short TH, et al. Global temporal patterns in plant nutrient resorption plasticity. Global Ecology and Biogeography, 2019, 28: 728-743 [36] Wright IJ, Cannon K. Relationships between leaf life-span and structural defences in a low-nutrient, sclerophyll flora. Functional Ecology, 2001, 15: 351-359 [37] Aerts R. Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Eco-logy, 1996, 84: 597-608 [38] Han W, Tang L, Chen Y, et al. Relationship between the relative limitation and resorption efficiency of nitrogen vs. phosphorus in woody plants. PLoS One, 2013, 8(12): e83366 [39] Deng Q, Hui DF, Dennis S, et al. Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: A meta-analysis. Global Ecology and Biogeography, 2017, 26: 713-728 [40] 陶宝先, 王晶东, 陈庆海, 等. 氮添加对黄河三角洲滨海湿地芦苇养分再吸收效率的影响. 生态学报, 2022, 42(3): 914-921 [41] van Heerwaarden LM, Toet S, Aerts R. Current mea-sures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: Facts and solutions. Oikos, 2003, 101: 664-669 |