[1] Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304: 1623-1627 [2] Huang JX, Lin TC, Xiong DC, et al. Organic carbon mineralization in soils of a natural forest and a forest plantation of southeastern China. Geoderma, 2019, 344: 119-126 [3] Yuan X, Qin WK, Xu H, et al. Sensitivity of soil carbon dynamics to nitrogen and phosphorus enrichment in an alpine meadow. Soil Biology and Biochemistry, 2022, 150: 107984 [4] Lin ZW, Li YF, Tang CX, et al. Converting natural evergreen broadleaf forests to intensively managed moso bamboo plantations affects the pool size and stability of soil organic carbon and enzyme activities. Biology and Fertility of Soils, 2018, 54: 467-480 [5] Li H, Dai MW, Dai SL, et al. Current status and environment impact of direct straw return in China’s cropland: A review. Ecotoxicology and Environmental Safety, 2018, 159: 293-300 [6] Lucas-Borja ME, Plaza-Alvarez PA, Ortega R, et al. Short-term changes in soil functionality after wildfire and straw mulching in a Pinus halepensis M. forest. Forest Ecology and Management, 2020, 457: 117700 [7] 裴志福, 红梅, 兴安, 等. 秸秆还田条件下盐渍土团聚体中有机碳化学结构特征. 应用生态学报, 2021, 32(12): 4401-4410 [8] 赵睿宇, 李正才, 王斌, 等. 毛竹林地表稻草覆盖后翻耕对土壤有机碳的影响. 生态学杂志, 2017, 36(8): 2118-2126 [9] Zhu CC, Zhong WH, Han C, et al. Driving factors of soil organic carbon sequestration under straw returning across China’s uplands. Forest Ecology and Management, 2023, 335: 117590 [10] Chen X, Lin JJ, Wang P, et al. Resistant soil carbon is more vulnerable to priming effect than active soil carbon. Soil Biology and Biochemistry, 2022, 168: 108619 [11] Lehmann J, Rillig MC, Thies J, et al. Biochar effects on soil biota: A review. Soil Biology and Biochemistry, 2011, 43: 1812-1836 [12] 黎嘉成, 高明, 田冬, 等. 秸秆及生物炭还田对土壤有机碳及其活性组分的影响. 草业学报, 2018, 27(5): 39-50 [13] 游东海. 秸秆直接还田效果及秸秆热解成生物炭还田模拟研究. 硕士论文. 杨凌: 西北农林科技大学, 2012 [14] Zhang JJ, Wei YX, Liu JZ, et al. Effects of maize straw and its biochar application on organic and humic carbon in water-stable aggregates of a Mollisol in Northeast China: A five-year field experiment. Soil & Tillage Research, 2019, 190: 1-9 [15] Li YC, Li YF, Chang SX, et al. Biochar reduces soil heterotrophic respiration in a subtropical plantation through increasing soil organic carbon recalcitrancy and decreasing carbon-degrading microbial activity. Soil Biology and Biochemistry, 2018, 122: 173-185 [16] Zhang SB, Fang YY, Luo Y, et al. Linking soil carbon availability, microbial community composition and enzyme activities to organic carbon mineralization of a bamboo forest soil amended with pyrogenic and fresh organic matter. Science of the Total Environment, 2021, 801: 149717 [17] 李玉敏, 冯鹏飞. 基于第九次全国森林资源清查的中国竹资源分析. 世界竹藤通讯, 2019, 17(6): 45-48 [18] Li YF, Zhang JJ, Chang SX, et al. Converting native shrub forests to Chinese chestnut plantations and subsequent intensive management affected soil C and N pools. Forest Ecology and Management, 2014, 312: 161-169 [19] 雷蕾, 肖文发. 采伐对森林土壤碳库影响的不确定性. 林业科学研究, 2015, 28(6): 892-899 [20] Li J, Liu SE, Zhao XC, et al. Responses of soil organic carbon decomposition and temperature sensitivity to N and P fertilization in different soil aggregates in a subtropical forest. Forests, 2023, 14: 72 [21] Brookes PC, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 1985, 17: 837-842 [22] Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19: 703-707 [23] Li YC, Li YF, Chang SX, et al. Linking soil fungal community structure and function to soil organic carbon chemical composition in intensively managed subtropical bamboo forests. Soil Biology and Biochemistry, 2017, 107: 19-31 [24] 孙娇, 周涛, 郭鑫年, 等. 添加秸秆及生物质炭对风沙土有机碳及其活性组分的影响. 土壤, 2021, 53(4): 802-808 [25] Parker N, Agyare WA, Bessah E, et al. Biochar as a substitute for inorganic fertilizer: Effects on soil chemical properties and maize growth in Ghana. Journal of Plant Nutrition, 2021, 44: 1539-1547 [26] 石含之, 赵沛华, 黄永东, 等. 秸秆还田对土壤有机碳结构的影响. 生态环境学报, 2020, 29(3): 536-542 [27] 徐秋桐, 邱志腾, 章明奎. 生物质炭对不同pH土壤中碳氮磷的转化与形态的影响. 浙江大学学报: 农业与生命科学版, 2014, 40(3): 303-313 [28] 李艳春, 汪航, 李兆伟, 等. 几种改良措施对酸化茶园土壤理化性质和微生物群落结构的影响. 茶叶科学, 2022, 42(5): 661-671 [29] 包建平, 袁根生, 董方圆, 等. 生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响. 土壤学报, 2020, 57(3): 721-729 [30] 李娜, 盛明, 尤孟阳, 等. 应用13C核磁共振技术研究土壤有机质化学结构进展. 土壤学报, 2019, 56(4): 796-812 [31] 王学霞, 张磊, 梁丽娜, 等. 秸秆还田对麦玉系统土壤有机碳稳定性的影响. 农业环境科学学报, 2020, 39(8): 1774-1782 [32] 张姝, 袁宇含, 苑佰飞, 等. 玉米秸秆深翻还田对土壤及其团聚体内有机碳含量和化学组成的影响[EB/OL]. (2021-06-23)[ 2023-05-29]. https://doi.org/10.13327/j.jjlau.2021.1111 [33] Kim KH, Kim JY, Cho TS, et al. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresource Technology, 2012, 118: 158-162 [34] 郝近羽, 陈源泉, 代红翠, 等. 不同有机物料还田后砂质土壤有机碳组分结构特征. 农业生物技术学报, 2022, 30(11): 2201-2211 [35] Yuan JH, Wang Y, Zhao X, et al. Seven years of biochar amendment has a negligible effect on soil available P and a progressive effect on organic C in paddy soils. Biochar, 2022, 4: 1 [36] Miao YC, Li JJ, Li Y, et al. Long-term compost amendment spurs cellulose decomposition by driving shifts in fungal community composition and promoting fungal diversity and phylogenetic relatedness. mBio, 2022, 13: e0032322 [37] Ma A, Zhuang X, Wu J, et al. Ascomycota members dominate fungal communities during straw residue decomposition in arable soil. PLoS One, 2013, 8: e66146 [38] Duan Y, Chen L, Li YM, et al. N, P and straw return influence the accrual of organic carbon fractions and microbial traits in a Mollisol. Geoderma, 2021, 403: 115373 [39] Tang HM, Li C, Xu YL, et al. Effects of fertilizer practice on fungal and actinobacterial cellulolytic community with different humified particle-size fractions in double-cropping field. Scientific Reports, 2021, 11: 18441 [40] Zimmerman AR, Gao B, Ahn M. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 2011, 43: 1169-1179 [41] 芦光新, 李宗仁. 高寒草地耐低温产酶真菌及其利用. 北京: 化学工业出版社, 2016: 58-68 [42] 黄彩霞, 芦光新, 李欣, 等. 产漆酶真菌对高寒草甸土壤有机质矿化特性的研究. 草地学报, 2021, 29(增刊1): 173-178 [43] Naylor D, Sadler N, Bhattacharjee A, et al. Soil microbiomes under climate change and implications for carbon cycling. Annual Review of Environment and Resources, 2020, 45: 29-59 |