Welcome to Chinese Journal of Applied Ecology! Today is Share:

Chinese Journal of Applied Ecology ›› 2024, Vol. 35 ›› Issue (3): 648-658.doi: 10.13287/j.1001-9332.202403.010

Previous Articles     Next Articles

Carbon wet deposition flux and river carbon output in a forest watershed in permafrost region of the Da Xing’an Mountains

LIU Huan1,2, YANG Xiaochen1,2, CAI Yushan1,2, CUI Yang1,2, DUAN Liangliang1,2*   

  1. 1School of Forestry, Northeast Forestry University, Harbin 150040, China;
    2Ministry of Education Key Laboratory of Sustainable Forest Ecosystem Management, Northeast Forestry University, Harbin 150040, China
  • Received:2023-06-15 Revised:2024-01-16 Online:2024-03-18 Published:2024-06-18

Abstract: Carbon wet deposition and river carbon output in river basins are important components of global carbon cycle. The assessment of both properties is of great significance for regional carbon budget. However, research on these topics in high-latitude permafrost regions in China is still lacking. We conducted dynamic monitoring of carbon wet deposition and carbon output in the river from May 28th to October 30th, 2022, in Laoyeling watershed, a typical forested watershed in the Da Xing’an Mountains permafrost region. We analyzed the variations of carbon component concentrations and fluxes in precipitation and river water, and estimated the contribution of carbon wet deposition to carbon output in the watershed. The results showed that wet deposition fluxes of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and total dissolved carbon (TDC) in the Laoyeling watershed were 1354.86, 684.59, and 2039.45 kg·km-2, respectively. The fluxes of DOC, DIC, TDC, particulate organic carbon (POC), particulate inorganic carbon (PIC), and total carbon (TC) in the river were 601.75, 1977.30, 2579.05, 125.13, 21.99, and 2726.17 kg·km-2, respectively. The contribution of TDC wet deposition to the river TDC output was 9941.89 kg, accounting for 17.6% of total output. The DIC concentration in the river showed significant seasonal differences, with increased runoff resulting from precipitation leading to a decrease in DIC concentration in the river and showing a clear dilution effect, while the concentrations of DOC, POC, and PIC increased, mainly due to erosion effect. In conclusion, carbon wet deposition flux in the Laoyeling watershed was mainly determined by precipitation, and its contribution to river carbon output was relatively small compared to other factor. Runoff was the dominant factor affecting river carbon output. The results would provide important insights into carbon cycling and carbon budget balance in permafrost regions under climate change.

Key words: river carbon component, river carbon output, carbon wet deposition, watershed carbon cycle, permafrost