[1] IPCC. Climate change 2021: The physical science basis. Chemistry International, 2021, 43: 22-23 [2] 吴祥定. 树木年轮分析在环境变化研究中的应用. 第四纪研究, 1990(2): 188-196 [3] D’Arrigo RD, Kaufmann RK, Davi N, et al. Thre-sholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Global Biogeochemical Cycles, 2004, 18: GB3021 [4] Zhao HY, Gong LJ, Qu HH, et al. The climate change variations in the northern Greater Khingan Mountains during the past centuries. Journal of Geographical Sciences, 2016, 26: 585-602 [5] Ren HX, Ren CY, Wang ZM, et al. Continuous trac-king of forest disturbance and recovery in the Greater Khingan Mountains from annual landsat imagery. Remote Sensing, 2023, 15: 5426 [6] 韩艳刚, 盖学瑞, 邱思玉, 等. 大兴安岭兴安落叶松径向生长对气候响应的时空变化. 应用生态学报, 2021, 32(10): 3397-3404 [7] 陈锐, 刘杰, 巴登花, 等. 升温对大兴安岭兴安落叶松径向生长的影响. 东北林业大学学报, 2022, 50(12): 19-24 [8] Wang ZP, Zhang TW, Zhang DY, et al. Responses of Pinus sylvestris var. mongolica tree ring width to climate factors at different elevations in the northern Greater Khingan Mountains. Dendrochronologia, 2024, 83: 126166 [9] 李瑞强, 赵丽丽, 张红光. 满归林业局森林资源动态分析. 林业勘查设计, 2009(4): 17-19 [10] 中华人民共和国民政部. 中华人民共和国政区大典内蒙古自治区卷. 北京: 中国社会出版社, 2018: 445-446 [11] 张中. 满归林业局森林资源现状与分析. 内蒙古林业调查设计, 2014, 37(3): 8-9 [12] Organization WM. Calculation of Monthly and Annual 30-Year Standard Normals. Geneva, Swizerland: World Meteorological Organization, 1989 [13] 姚启超, 王晓春, 肖兴威. 小兴安岭红皮云杉年轮-气候关系及其衰退原因. 应用生态学报, 2015, 26(7): 1935-1944 [14] Bryukhanova MV, Fonti P, Kirdyanov AV, et al. The response of δ 13C, δ 18O and cell anatomy of Larix gmelinii tree rings to differing soil active layer depths. Dendrochronologia, 2015, 34: 51-59 [15] Gindl W, Grabner M, Wimmer R. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, 2000, 14: 409-414 [16] 郭雪梅, 王兆鹏, 张楠, 等. 樟子松和落叶松径向生长对气候变化的响应. 应用生态学报, 2021, 32(10): 3405-3414 [17] Xu CY, Du C, Jian JS, et al. The interplay of labile organic carbon, enzyme activities and microbial communities of two forest soils across seasons. Scientific Reports, 2021: 5002 [18] Deslauriers A, Rossi S, Anfodillo T. Dendrometer and intra-annual tree growth: What kind of information can be inferred? Dendrochronologia, 2007, 25: 113-124 [19] Reich PB, Sendall KM, Stefanski A, et al. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature, 2018, 562: 263-267 [20] 熊千志, 杜恩在, 薛峰, 等. 塞罕坝地区人工针叶林径向生长对水热条件的响应. 生态学报, 2022, 42(13): 5371-5380 [21] 冯玉龙, 王文章, 敖红. 长白落叶松和樟子松等五种树种抗旱性的比较. 东北林业大学学报, 1998, 11(6): 16-20 [22] Xu ZZ, Zhou GS, Shimizu H. Plant responses to drought and rewatering. Plant Signaling & Behavior, 2010, 5: 649-654 [23] Bhusal N, Lee M, Lee H, et al. Evaluation of morphological, physiological, and biochemical traits for asse-ssing drought resistance in eleven tree species. Science of the Total Environment, 2021, 779: 146466 [24] 李文超, 张秋良, 郝帅, 等. 大兴安岭温度梯度下兴安落叶松径向生长对气候的响应差异. 内蒙古林业科技, 2023, 49(1): 1-8 [25] 张锡唐, 石长春, 高荣, 等. 沿黄土石山区几种针叶树造林生长情况研究. 防护林科技, 2023(1): 10-12 [26] 张默涵, 孔涛, 黄丽华, 等. 沙地樟子松根系分布及土壤、微生物生态化学计量特征. 山西农业科学, 2023, 51(8): 912-920 [27] Zhuang L, Axmacher JC, Sang W. Different radial growth responses to climate warming by two dominant tree species at their upper altitudinal limit on Changbai Mountain. Journal of Forestry Research, 2017, 28: 795-804 [28] 李颖辉, 齐贵增, 冯荣荣, 等. 秦岭北麓油松径向生长对气候变化的响应. 应用生态学报, 2022, 33(8): 2043-2050 [29] 白学平, 常永兴, 张先亮, 等. 近30年快速升温对两种典型小地形上兴安落叶松径向生长的影响. 应用生态学报, 2016, 27(12): 3853-3861 [30] Du HB, Xu LL, Camarero JJ, et al. Radial growth responses of Larix gmelinii to drought events in dry and wet areas of northern temperate forests. Dendrochronologia, 2024, 84: 126185 [31] Kirdyanov A, Hughes M, Vaganov E, et al. The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees, 2002, 17: 61-69 [32] Barnett TP, Adam JC, Lettenmaier DP. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 2005, 438: 303-309 [33] 李俊霞, 白学平, 张先亮, 等. 大兴安岭林区南、北部天然樟子松生长对气候变化的响应差异. 生态学报, 2017, 37(21): 7232-7241 [34] Zhao XE, Chen F, Seim A, et al. Global warming leads to growth increase in Pinus sylvestris in the Kazakh steppe. Forest Ecology and Management, 2024, 553: 121635 [35] 张晓, 吴梦婉, Kwon S, 等. 不同林龄樟子松人工林径向生长对气候及地下水位变化的响应. 生态学报, 2022, 42(16): 6827-6837 [36] Misra KG, Singh V, Yadava AK, et al. Himalayan blue pine deduced precipitation record from cold arid lahaul-Spiti, Himachal Pradesh, India. Frontiers in Earth Science, 2021, 9: 645959 [37] 王恒, 王小雪, 贾建恒, 等. 华北落叶松径向生长对升温突变的响应. 应用生态学报, 2023, 34(10): 2629-2636 [38] Science P. Heating up: Photosynthesis process has altered in last 100 years. Potato Grower, 2016, 45: 52-53 [39] Zhang XW, Liu XH, Zhang QL, et al. Species-specific tree growth and intrinsic water-use efficiency of Dahurian larch (Larix gmelinii) and Mongolian pine (Pinus sylvestris var. mongolica) growing in a boreal permafrost region of the Greater Hinggan Mountains, Northeastern China. Agricultural & Forest Meteorology, 2018, 248: 145-155 [40] 乔晶晶, 王童, 潘磊, 等. 不同海拔和坡向马尾松树轮宽度对气候变化的响应. 应用生态学报, 2019, 30(7): 2231-2240 [41] 张菊梅, 范泽鑫, 付培立, 等. 普达措国家公园四种针叶树径向生长对气候因子的响应. 应用生态学报, 2021, 32(10): 3548-3556 [42] Sanchez-Salguero R, Camarero JJ, Gutiérrez E, et al. Climate warming alters age-dependent growth sensitivity to temperature in Eurasian alpine treelines. Forests, 2018, 9: 688 |