[1] Wu D, Jia KL, Zhang XD, et al. Remote sensing inversion for simulation of soil salinization based on hyperspectral data and ground analysis in Yinchuan, China. Natural Resources Research, 2021, 30: 4641-4656 [2] Wang N, Chen S, Huang J, et al. Global soil salinity estimation at 10 m using multi-source remote sensing. Journal of Remote Sensing, 2024, 4: 0130 [3] 蔡海辉, 彭杰, 柳维扬, 等. 基于棉田原位高光谱数据的土壤pH值反演与制图研究. 水土保持通报, 2021, 41(4): 189-195 [4] Ma Y, Tashpolat N. Current status and development trend of soil salinity monitoring research in China. Sustainability, 2023, 15: 5874 [5] Tang RN, Li XW, Li C, et al. Estimation of total nitrogen content in rubber plantation soil based on hyperspectral and fractional order derivative. Electronics, 2022, 11: 1956 [6] 苏红军. 高光谱遥感影像降维: 进展、挑战与展望. 遥感学报, 2022, 26(8): 1504-1529 [7] Yu H, Kong B, Wang Q, et al. Hyperspectral remote sensing applications in soil: A review// Pandey PC, Srivastava PK, Balzter H, eds. Hyperspectral Remote Sensing. Amsterdam: Elsevier, 2020: 269-291 [8] Jiang XF, Duan HC, Liao J, et al. Estimation of soil salinization by machine learning algorithms in different arid regions of northwest China. Remote Sensing, 2022, 14: 347 [9] 张贤龙, 张飞, 张海威, 等. 基于光谱变换的高光谱指数土壤盐分反演模型优选. 农业工程学报, 2018, 34(1): 110-117 [10] Wang JZ, Ding JL, Abulimiti A, et al. Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS-NIR) spectroscopy, Ebinur Lake Wetland, Northwest China. PeerJ, 2018, 6: e4703 [11] Wang Z, Zhang F, Zhang XL, et al. Regional suitability prediction of soil salinization based on remote-sensing derivatives and optimal spectral index. Science of the Total Environment, 2021, 775: 145807 [12] 孙亚楠, 李仙岳, 史海滨, 等. 基于高光谱数据的盐荒地和耕地土壤盐分遥感反演优化. 农业工程学报, 2022, 38(23): 101-111 [13] 王怡婧, 陈睿华, 张俊华, 等. 基于分数阶微分技术的土壤水盐信息高光谱反演. 应用生态学报, 2023, 34(5): 1384-1394 [14] 孙媛, 贾萍萍, 尚天浩, 等. 基于地表高光谱与OLI影像的土壤含盐量和pH值估测. 干旱地区农业研究, 2021, 39(1): 164-174 [15] 王璐, 李乐乐, 赖梦霞, 等. 土壤盐分空间异质性成因及对植物生长影响研究进展. 浙江农林大学学报, 2022, 39(6): 1369-1377 [16] Liu SJ, Xiao ZY. Research on hyperspectral inversion of soil alkaline hydrolysis nitrogen content and pH value based on DWD. Journal of Physics: Conference Series, 2021, 2079: 012021 [17] Cui JW, Chen XW, Han WT, et al. Estimation of soil salt content at different depths using UAV multi-spectral remote sensing combined with machine learning algorithms. Remote Sensing, 2023, 15: 5254 [18] 贾壮壮, 谭亚男, 管孝艳, 等. 宁夏盐碱地成因及分区治理措施综述. 灌溉排水学报, 2023, 42(5): 122-134 [19] Jia PP, Zhang JH, He W, et al. Inversion of different cultivated soil types’s salinity using hyperspectral data and machine learning. Remote Sensing, 2022, 14: 5639 [20] 王怡婧, 丁启东, 张俊华, 等. 基于无人机高光谱遥感和机器学习的土壤水盐信息反演. 应用生态学报, 2023, 34(11): 3045-3052 [21] 张成才, 王蕊, 侯佳彤, 等. 基于特征变量筛选的无人机多光谱遥感土壤含水量反演. 中国农村水利水电, 2024(5): 147-154 [22] 钟骁勇, 李洪义, 郭冬艳, 等. 基于多源环境变量和随机森林模型的江西省耕地土壤pH值空间预测. 自然资源遥感, 2023, 35(4): 178-185 [23] 韩文霆, 崔家伟, 崔欣, 等. 基于特征优选与机器学习的农田土壤含盐量估算研究. 农业机械学报, 2023, 54(3): 328-337 [24] Jia PP, Zhang JH, He W, et al. Combination of hyperspectral and machine learning to invert soil electrical conductivity. Remote Sensing, 2022, 14: 2602 [25] 鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2000 [26] Tian AH, Zhao JS, Tang BH, et al. Study on the pretreatment of soil hyperspectral and Na+ ion data under different degrees of human activity stress by fractional-order derivatives. Remote Sensing, 2021, 13: 3974 [27] 张子鹏, 丁建丽, 王敬哲, 等. 利用三维光谱指数定量估算土壤有机质含量: 以新疆艾比湖流域为例. 光谱学与光谱分析, 2020, 40(5): 1514-1522 [28] 张俊华, 尚天浩, 陈睿华, 等. 基于光谱FOD与优化指数的银川平原土壤有机质含量反演. 农业机械学报, 2022, 53(11): 379-387 [29] Brady NC, Well RR. 李保国, 徐建明, 译. 土壤学与生活. 北京: 科学出版社, 2019 [30] Bandak S, Movahedi-Naeini SA, Mehri S, et al. A longitudinal analysis of soil salinity changes using remotely sensed imageries. Scientific Reports, 2024, 14: 10383 [31] 张俊华, 贾萍萍, 孙媛, 等. 基于高光谱特征的盐渍化土壤不同土层盐分离子含量预测. 农业工程学报, 2019, 35(12): 106-115 [32] Ge XY, Ding JL, Teng DX, et al. Exploring the capability of Gaofen-5 hyperspectral data for assessing soil salinity risks. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102969 [33] Lao CC, Chen JY, Zhang ZT, et al. Predicting the contents of soil salt and major water-soluble ions with fractional-order derivative spectral indices and variable selection. Computers and Electronics in Agriculture, 2021, 182: 106031 [34] 张恒, 梁太波, 宋效东, 等. 基于高光谱成像的烟田土壤pH估测. 西南农业学报, 2023, 36(12): 2771-2779 [35] Debebe W, Yirgu T, Debele M. Dynamics of soil physical and chemical properties under different current land use types and elevation gradients in the Sala watershed of Ari zone, South Ethiopia. Applied and Environmental Soil Science, 2024, 2024: 7389265 [36] Yan Y, Kayem K, Hao Y, et al. Mapping the levels of soil salination and alkalization by integrating machining learning methods and soil-forming factors. Remote Sen-sing, 2022, 14: 3020 [37] 陈睿华, 王怡婧, 张俊华, 等. 基于分数阶微分光谱指数的银川平原土壤含盐量反演. 生态学杂志, 2023, 42(9): 2296-2304 [38] Xu XB, Wang XG, Yang PJ, et al. Strategy for mapping soil salt contents during the bare soil period through a satellite image: Optimal calibration set combined with random forest. Catena, 2023, 223: 106900 [39] Jia PP, Shang TH, Zhang JH, et al. Inversion of soil pH during the dry and wet seasons in the Yinbei region of Ningxia, China, based on multi-source remote sen-sing data. Geoderma Regional, 2021, 25: e00399 [40] Ma M, Hao Y, Huang QC, et al. Soil salinity estimation by 3D spectral space optimization and deep soil investigation in the Songnen Plain, Northeast China. Sustai-nability, 2024, 16: 2069 [41] 于海洋, 谢赛飞, 郭灵辉, 等. 融合光谱和空间特征的土壤重金属含量极端随机树估算. 农业机械学报, 2022, 53(8): 231-239 [42] Zhang YZ, Liu JJ, Shen WJ. A review of ensemble learning algorithms used in remote sensing applications. Applied Sciences, 2022, 12: 8654 |