[1] García-Tejera O, López-Bernal Á, Testi L, et al. Erratum to: A soil-plant-atmosphere continuum (SPAC) model for simulating tree transpiration with a soil multi-compartment solution. Plant and Soil, 2017, 418: 581 [2] William H, Schlesinger SJ. Transpiration in the global water cycle. Agricultural and Forest Meteorology, 2014, 189-190: 115-117 [3] 林雪雯, 郭建斌, 韩炎穆, 等. 不同天气下华北落叶松树干液流对环境的响应. 应用生态学报, 2024, 35(8): 2063-2072 [4] 涂立辉, 熊伟, 王彦辉, 等. 宁夏六盘山半干旱区典型植物群落的持水功能及其对土壤有机碳的影响. 北京师范大学学报: 自然科学版, 2023, 59(3): 433-441 [5] 温杰, 陈云明, 唐亚坤, 等. 黄土丘陵区油松、沙棘生长旺盛期树干液流密度特征及其影响因素. 应用生态学报, 2017, 28(3): 763-771 [6] 张智伟, 万艳芳, 于澎涛, 等. 六盘山华北落叶松和白桦林日蒸腾对环境因子的响应差异. 林业科学, 2024, 60(10): 29-39 [7] Chen S, Wei W, Huang Y. Biophysical controls on canopy transpiration of Pinus tabuliformis under different soil moisture conditions in the Loess Plateau of China. Journal of Hydrology, 2024, 631: 130799 [8] Chen S, Zhang Z, Chen Z, et al. Responses of canopy transpiration and conductance to different drought levels in Mongolian pine plantations in a semiarid urban environment of China. Agricultural and Forest Meteorology, 2024, 347: 109897 [9] 许庭毓, 牛香, 王兵, 等. 不同土壤水分条件下杉木种源树干液流特征对气象因子的响应. 中国水土保持科学, 2023, 21(5): 99-105 [10] 于松平, 刘泽彬, 郭建斌, 等. 六盘山华北落叶松林分蒸腾特征及其影响因素. 南京林业大学学报: 自然科学版, 2021, 45(1): 131-140 [11] 王云霓, 曹恭祥, 王彦辉, 等. 六盘山南侧华北落叶松人工林冠层蒸腾及其影响因子的坡位差异. 应用生态学报, 2018, 29(5): 1503-1514 [12] 张婕, 蔡永茂, 陈立欣, 等. 北京山区元宝枫夜间液流活动特征及影响因素. 生态学报, 2019, 39(9): 3210-3223 [13] 秦颢萍, 刘泽彬, 郭建斌, 等. 环境和冠层结构对华北落叶松林树干液流的影响. 应用生态学报, 2021, 32(5): 1681-1689 [14] Hong L, Guo J, Liu Z, et al. Time-lag effect between sap flow and environmental factors of Larix principis-rupprechtii Mayr. Forests, 2019, 10: 971 [15] 曹恭祥, 王云霓, 郭中, 等. 六盘山南侧华北落叶松人工林蒸腾对土壤水分和潜在蒸散的响应. 应用生态学报, 2020, 31(10): 3376-3384 [16] 常乐, 刘美君, 吕金林, 等. 树干液流对蒸腾驱动因子响应的土壤水分限制与非限制特征. 应用生态学报, 2024, 35(4): 1064-1072 [17] 王媛, 魏江生, 周梅, 等. 大兴安岭南段白桦树干液流对土壤水分的响应. 水土保持研究, 2020, 27(4): 128-133 [18] Chen SN, Zuo C, Hang X, et al. Biophysical regulations of transpiration and water use strategy in a mature Chinese pine (Pinus tabuliformis) forest in a semiarid urban environment. Hydrological Processes, 2022, 36: e14485 [19] 颜成正, 郑文革, 贾剑波, 等. 控水条件下侧柏冠层气孔导度对土壤水的响应. 应用生态学报, 2020, 31(12): 4017-4026 [20] 吕金林, 何秋月, 闫美杰, 等. 黄土丘陵区辽东栎树干液流特征对边材面积和土壤水分的响应. 应用生态学报, 2018, 29(3): 725-731 [21] 方伟伟, 吕楠, 傅伯杰. 植物夜间液流的发生、生理意义及影响因素研究进展. 生态学报, 2018, 38(21): 7521-7529 [22] Fisher JB, Baldocchi DD, Laurent M, et al. What the towers don’t see at night: Nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California. Tree Physiology, 2007, 27: 597-610 [23] 付照琦, 胡旭, 田沁瑞, 等. 晋西黄土区2种典型森林树种夜间液流特征及对环境因子的响应. 植物生态学报, 2024, 48(9): 1-15 [24] 张星宇, 杨金艳, 阮宏华, 等. 模拟干旱下杨树树干液流特征及其对环境因子的响应. 水土保持研究, 2024, 31(2): 84-91 [25] 陈丽茹, 李秧秧. 沙柳和柠条茎水力学特性对模拟降雨改变的响应. 应用生态学报, 2018, 29(2): 507-514 [26] 徐德应, 熊伟, 王彦辉. 宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应. 林业科学, 2003, 39(2): 1-7 [27] Zhang H, Simmonds LP, Morison JI, et al. Estimation of transpiration by single trees: Comparison of sap flow measurements with a combination equation. Agricultural and Forest Meteorology, 1997, 87: 155-169 [28] Karpul RH, West AG. Wind drives nocturnal, but not diurnal, transpiration in Leucospermum conocarpodendron trees: Implications for stilling on the Cape Peninsula. Tree Physiology, 2016, 36: 954-966 [29] Kim D, Oren R, Oishi AC, et al. Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest. Agricultural and Forest Meteorology, 2014, 187: 62-71 [30] 罗丹丹, 王传宽, 金鹰. 植物水分调节对策: 等水与非等水行为. 植物生态学报, 2017, 41(9): 1020-1032 [31] 金鹰,王传宽,桑英. 三种温带树种树干储存水对蒸腾的贡献. 植物生态学报, 2011, 35(12): 1310-1317 [32] 张博奕, 李雪, 张先亮. 干旱事件对华北落叶松和油松生态弹性的影响差异. 河北农业大学学报, 2023, 46(4): 65-73 [33] 王恒, 王小雪, 贾建恒, 等. 华北落叶松径向生长对升温突变的响应. 应用生态学报, 2023, 34(10): 2629-2636 [34] Harmon RE, Barnard HR, Day-Lewis FD, et al. Exploring environmental factors that drive diel variations in tree water storage using wavelet analysis. Frontiers in Water, 2021, 3: 682285 |