[1] Pickett STA, White PS. The Ecology of Natural Distur-bance and Patch Dynamics. New York: Academic Press, 1985: 472 [2] White PS. Pattern, process, and natural disturbance in vegetation. Botanical Review, 1979, 45: 229-299 [3] Zhu JJ, Liu ZG, Matsuzaki T, et al. Review: Effects of wind on trees. Journal of Forestry Research, 2004, 15: 153-160 [4] Masek JG, Goward SN, Kennedy RE, et al. United states forest disturbance trends observed using LandsatTime series. Ecosystems, 2013, 16: 1087-1104 [5] Nolan C, Overpeck JT, Allen JRM, et al. Past and future global transformation of terrestrial ecosystems under climate change. Science, 2018, 361: 920-923 [6] Glasby MJ, Russell MB, Domke GM. Analyzing the impacts of forest disturbance on individual tree diameter increment across the US Lake States. Environmental Monitoring & Assessment, 2019, 191: 1-11 [7] Thom D, Rammer W, Dirnböck T, et al. The impacts of climate change and disturbance on spatio-temporal tra-jectories of biodiversity in a temperate forest landscape. Journal of Applied Ecology, 2017, 54: 28-38 [8] 袁菲, 张星耀, 梁军. 基于有害干扰的森林生态系统健康评价指标体系的构建. 生态学报, 2012, 32(3): 964-973 [9] Dale VH, Joyce LA, Mcnulty S, et al. Climate change and forest disturbances. BioScience, 2001, 51: 723-734 [10] Sulla-Menashe D, Kennedy RE, Yang Z, et al. Detecting forest disturbance in the Pacific Northwest from MODIS time series using temporal segmentation. Remote Sensing of Environment, 2014, 151: 114-123 [11] Willem JD. Monitoring the effects of forest restoration treatments on post-fire vegetation recovery with MODIS multitemporal data. Sensors, 2008, 8: 2017-2042 [12] Spruce JP, Sader S, Ryan RE, et al. Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks. Remote Sensing of Environment, 2011, 115: 427-437 [13] Chen J, Sun L. Using MODIS EVI to detect vegetation damage caused by the 2008 ice and snow storms in south China. Journal of Geophysical Research: Biogeosciences, 2010, 115, DOI: 10.1029/ 2009JG001246 [14] 吕莹莹, 庄义琳, 任芯雨, 等. 南京城市森林干扰及恢复自动制图. 应用生态学报, 2016, 27(2): 429-435 [15] 殷崎栋, 柳彩霞, 田野. 基于Landsat时序影像和LandTrendr算法的森林保护区植被扰动研究: 以陕西柴松和太白山保护区为例. 生态学报, 2020, 40(20): 7343-7352 [16] Kennedy RE, Yang ZQ, Noel G, et al. Implementation of the LandTrendr algorithm on Google Earth Engine. Remote Sensing, 2018, 10: 691 [17] 邵亚奎. GEE云平台支持下的西天山森林遥感监测与时空变化分析. 测绘通报, 2020(8): 13-17 [18] Hislop S, Jones S, Soto-Berelov M, et al. High fire disturbance in forests leads to longer recovery, but varies by forest type. Remote Sensing in Ecology and Conservation, 2019, 5: 376-388 [19] 饶月明, 王川, 黄华国. 联合多源遥感数据监测四川木里县森林火灾. 遥感学报, 2020, 24(5): 559-570 [20] Xu HR, Ying YB, Fu XP, et al. Near-infrared spectroscopy in detecting leaf Miner damage on tomato leaf. Biosystems Engineering, 2007, 96: 447-454 [21] Luo J, Huang W, Zhao J, et al. Detecting aphid density of winter wheat leaf using hyperspectral measurements. IEEE Journal of Selected Topics in Applied Earth Observations& Remote Sensing, 2013, 6: 690-698 [22] Prabhakar M, Prasad YG, Thiruathi M, et al. Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leaf hopper (Hemiptera: Cicadellidae). Computers and Electronics in Agriculture, 2011, 79: 189-198 [23] Bucha T, Stibig HJ. Analysis of MODIS imagery for detection of clear cuts in the boreal forest in north-west Russia. Remote Sensing of Environment, 2008, 112: 2416-2429 [24] Wilson EH, Sader SA. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment, 2002, 80: 385-396 [25] Schroeder TA, Wulder MA, Healey SP, et al. Mapping wildfire and clearcut harvest disturbances in boreal forests with Landsat time series data. Remote Sensing of Environment, 2011, 115: 1421-1433 [26] Mildrexler DJ, Zhao M, Running SW. Testing a MODIS global disturbance index across North America. Remote Sensing of Environment, 2009, 113: 2103-2117 [27] Schmugge TJ, Kustas WP, Ritchie JC, et al. Remote sensing in hydrology. Advances in Water Resources, 2002, 25: 1367-1385 [28] Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 2002, 83: 195-213 [29] 吴伟, 武瑞东. 利用卫星遥感数据提取生态干扰信息的方法研究. 科研信息化技术与应用, 2017, 8(3): 37-43 [30] Goetz SJ. Multi-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. International Journal of Remote Sensing, 1997, 18: 71-94 [31] Liu SL, Liu LM, Wu X, et al. Quantitative evaluation of human activity intensity on the regional ecological impact studies. Acta Ecological Sinica, 2018, 38: 6797-6809 [32] Tao J, Zhang Y, Yuan X, et al. Analysis of forest fires in Northeast China from 2003 to 2011. International Journal of Remote Sensing, 2013, 34: 8235-8251 [33] Mildrexler DJ, Zhao M, Heinsch FA, et al. A new satellite-based methodology for continental-scale disturbance detection. Ecological Applications, 2007, 17: 235-250 [34] Coops NC, Wulder MA, Iwanicka D. Large area monitoring with a MODIS-based disturbance index (DI) sensitive to annual and seasonal variations. Remote Sensing of Environment, 2009, 113: 1250-1261 [35] Kennedy RE, Yang ZQ, Cohen WB. Detecting trends in forest disturbance and recovery using yearly Landsat time series:1. LandTrendr-Temporal segmentation algorithms. Remote Sensing of Environment, 2010, 114: 2897-2910 [36] Miller JD, Thode AE. Quantifying burn severity in a heterogeneous landscape with a relative version of the Delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment, 2007, 109: 66-80 [37] 李春晖, 杨志峰. 黄河流域NDVI时空变化及其与降水/径流关系. 地理研究, 2004, 23(6): 753-759 [38] Hardisky MA, Klemas V, Smart RM. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogrammetric Engineering & Remote Sensing, 1983, 49: 77-84 [39] Wilson EH, Sader SA. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment, 2002, 80: 385-396 [40] Breiman L. Random forests. Machine Learning, 2001, 45: 5-32 [41] 刘毅, 杜培军, 郑辉, 等. 基于随机森林的国产小卫星遥感影像分类研究. 测绘科学, 2012, 37(4): 194-196 [42] Giglio L, Randerson JT, Vander Werf GR. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research: Biogeosciences, 2003, 118: 317-328 [43] 钟莉, 陈芸芝, 汪小钦. 基于Landsat时序数据的森林干扰监测. 林业科学, 2020, 56(5): 80-88 |