Chinese Journal of Applied Ecology ›› 2025, Vol. 36 ›› Issue (6): 1923-1932.doi: 10.13287/j.1001-9332.202506.009
• Reviews • Previous Articles
ZHAO Shuwen, HUA Jiamin, PAN Yinuo, HAN Yingxin, ZHENG Yawen, LIN Jixiang, YANG Qingjie, WANG Jinghong*
Received:
2025-02-17
Accepted:
2025-04-24
Online:
2025-06-18
Published:
2025-12-18
ZHAO Shuwen, HUA Jiamin, PAN Yinuo, HAN Yingxin, ZHENG Yawen, LIN Jixiang, YANG Qingjie, WANG Jinghong. Research advances in the regulatory mechanisms of root apoplast on mineral nutrition of plants[J]. Chinese Journal of Applied Ecology, 2025, 36(6): 1923-1932.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202506.009
[1] 王志刚. OsCASP1在水稻根内皮层凯氏带形成和矿质元素吸收中的作用机理. 博士论文. 南宁: 广西大学, 2022 [2] Kim YX, Ranathunge K, Lee S, et al. Composite transport model and water and solute transport across plant roots: An update. Frontiers in Plant Science, 2018, 9: 193 [3] Sattelmacher B. The apoplast and its significance for plant mineral nutrition. New Phytologist, 2001, 149: 167-192 [4] Farvardin A, González-Hernández AI, Llorens E, et al. The apoplast: A key player in plant survival. Antioxidants, 2020, 9: 604 [5] Barberon M, Vermeer JEM, De Bellis D, et al. Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell, 2016, 164: 447-459 [6] Roy RN, Finck A, Blair GJ, et al. Plant nutrition for food security. Experimental Agriculture, 2007, 43: 132-132 [7] 陈迪, 潘伟槐, 周哉材, 等. 植物营养元素运输载体的功能及其调控机制研究进展. 浙江大学学报: 农业与生命科学版, 2018, 44(3): 283-293 [8] Francis B, Aravindakumar CT, Brewer PB, et al. Plant nutrient stress adaptation: A prospect for fertilizer limited agriculture. Environmental and Experimental Botany, 2023, 213: 105431 [9] 周骏. 数字劳工研究热点及趋势分析: 基于Cite Space的分析. 传媒, 2023(18): 90-92 [10] 蒋文毓栋. 绿色建筑研究进展与主题前沿的“可视化”分析. 硕士论文. 昆明: 昆明理工大学, 2020 [11] Gámez-Arjona FM, Sánchez-Rodríguez C, Montesinos JC. The root apoplastic pH as an integrator of plant signaling. Frontiers in Plant Science, 2022, 13: 931979 [12] Meychik N, Nikolaeva Y, Kushunina M. The significance of ion-exchange properties of plant root cell walls for nutrient and water uptake by plants. Plant Physiology and Biochemistry, 2021, 166: 140-147 [13] 陶琦. 质外体途径在超积累植物东南景天镉吸收与运输中的作用及其调控机制. 博士论文. 杭州: 浙江大学, 2017 [14] Li T, Yang X, Meng F, et al. Zinc adsorption and desorption characteristics in root cell wall involving zinc hyperaccumulation in Sedum alfredii Hance. Journal of Zhejiang University Science B, 2007, 8: 111-115 [15] Nishizono H, Ichikawa H, Suziki S, et al. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant and Soil, 1987, 101: 15-20 [16] Bienfait HF, van den Briel W, Mesland-Mul NT. Free space iron pools in roots: Generation and mobilization. Plant Physiology, 1985, 78: 596-600 [17] Zhang FQ, Wang YS, Lou ZP, et al. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere, 2007, 67: 44-50 [18] Dahiya P. Role of death in providing lifeline to plants. Trends in Plant Science, 2003, 8: 462-465 [19] 李文海. 胡杨枝条木质部导管结构与导水特征对叶片形态变化和光合作用的影响. 博士论文. 北京: 北京林业大学, 2020 [20] Yamaji N, Ma JF. The node, a hub for mineral nutrient distribution in graminaceous plants. Trends in Plant Science, 2014, 19: 556-563 [21] Yamaji N, Ma JF. A transporter at the node responsible for intervascular transfer of silicon in rice. Plant Cell, 2009, 21: 2878-2883 [22] Yamaji N, Chiba Y, Mitani-Ueno N,et al. Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiology, 2012, 160: 1491-1497 [23] 赵素娥. 植物对矿质元素的吸收、运输和分配(续). 生物学通报, 1985(9): 1-3 [24] Tsai HH, Schmidt W. The enigma of environmental pH sensing in plants. Nature Plants, 2021, 7: 106-115 [25] 张海龙. 拟南芥SYP71通过调控质外体pH稳态调节根发育的机制分析. 博士论文. 哈尔滨: 东北林业大学, 2023 [26] Gámez-Arjona FM, Sánchez-Rodríguez C, Montesinos JC. The root apoplastic pH as an integrator of plant signaling. Frontiers in Plant Science, 2022, 13: 931979 [27] Li L, Verstraeten I, Roosjen M, et al. Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature, 2021, 599: 273-277 [28] Wolterbeek HT, Bode P, De Bruin M. Cation exchange in isolated xylem cell walls of tomato. Ⅱ. Direct determination of chemically bound and electrostatically attracted Cd2+ by γ-γ-directional correlation measurements. Plant, Cell & Environment, 1987, 10: 297-302 [29] Minjian C, Haiqiu Y, Hongkui Y, et al. Difference in tolerance to potassium deficiency between two maize inbred lines. Plant Production Science, 2007, 10: 42-46 [30] Foster KJ, Miklavcic SJ. A comprehensive biophysical model of ion and water transport in plant roots. III. Quantifying the energy costs of ion transport in salt-stressed roots of Arabidopsis. Frontiers in Plant Science, 2020, 11: 865 [31] Wegner LH, Shabala S. Biochemical pH clamp: The forgotten resource in membrane bioenergetics. New Phytologist, 2020, 225: 37-47 [32] Liu Y, von Wirén N. Ammonium as a signal for physiological and morphological responses in plants. Journal of Experimental Botany, 2017, 68: 2581-2592 [33] Coleto I, Marín-Peña AJ, Urbano-Gámez JA, et al. Interaction of ammonium nutrition with essential mineral cations. Journal of Experimental Botany, 2023, 74: 6131-6144 [34] Dora S, Terrett OM, Sánchez-Rodríguez C. Plant-microbe interactions in the apoplast: Communication at the plant cell wall. Plant Cell, 2022, 34: 1532-1550 [35] Verbon EH, Trapet PL, Stringlis IA, et al. Iron and immunity. Annual Review of Phytopathology, 2017, 55: 355-375 [36] Cardoso AF, Alves EC, da Costa SDA, et al. Bacillus cereus improves performance of Brazilian green dwarf coconut palms seedlings with reduced chemical fertilization. Frontiers in Plant Science, 2021, 12: 649487 [37] Wang Z, Li X, Ji B, et al. Coupling between the responses of plants, soil, and microorganisms following grazing exclusion in an overgrazed grassland. Frontiers in Plant Science, 2021, 12: 640789 [38] Lucena C, Zimmermann SD, Wang J, et al. Beneficial microbes and the interconnection between crop mineral nutrition and induced systemic resistance. Frontiers in Plant Science, 2021, 12: 790616 [39] Narváez-Barragán DA, Tovar-Herrera OE, Segovia L, et al. Expansin-related proteins: Biology, microbe-plant interactions and associated plant-defense responses. Microbiology, 2020, 166: 1007-1018 [40] Kubicek CP, Starr TL, Glass NL. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annual Review of Phytopathology, 2014, 52: 427-451 [41] Yu K, Liu Y, Tichelaar R, et al. Rhizosphere-associated pseudomonas suppress local root immune responses by gluconic acid-mediated lowering of environmental pH. Current Biology, 2019, 29: 3913-3920 [42] Prusky D, McEvoy JL, Leverentz B, et al. Local modulation of host pH by Colletotrichum species as a mechanism to increase virulence. Molecular Plant-Microbe Interactions, 2001, 14: 1105-1113 [43] Westphal L, Strehmel N, Eschen-Lippold L, et al. pH effects on plant calcium fluxes: Lessons from acidification-mediated calcium elevation induced by the γ-glutamyl-leucine dipeptide identified from Phytophthora infestans. Scientific Reports, 2019, 9: 4733 [44] 刘鑫. 根系质外体屏障在老芒麦适应干旱胁迫中的作用. 硕士论文. 成都: 西南民族大学, 2022 [45] 刘鑫, 王沛, 周青平. 植物根系质外体屏障研究进展. 植物学报, 2021, 56(6): 761-773 [46] Molnár Z, Solomon W, Mutum L, et al. Understanding the mechanisms of Fe deficiency in the rhizosphere to promote plant resilience. Plants, 2023, 12: 1945 [47] Liu XX, Zhu XF, Zheng SJ, et al. Beyond iron-storage pool: Functions of plant apoplastic iron during stress. Trends in Plant Science, 2023, 28: 941-954 [48] Ning X, Lin M, Huang G, et al. Research progress on iron absorption, transport, and molecular regulation strategy in plants. Frontiers in Plant Science, 2023, 14: 1190768 [49] Martín-Barranco A, Spielmann J, Dubeaux G, et al. Dynamic control of the high-affinity iron uptake complex in root epidermal cells. Plant Physiology, 2020, 184: 1236-1250 [50] Peng JS, Zhang BC, Chen H, et al. Galactosylation of rhamnogalacturonan-Ⅱ for cell wall pectin biosynthesis is critical for root apoplastic iron reallocation in Arabidopsis. Molecular Plant, 2021, 14: 1640-1651 [51] Ishimaru Y, Kakei Y, Shimo H, et al. A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele. Journal of Biological Chemistry, 2011, 286: 24649-24655 [52] Bashir K, Ishimaru Y, Shimo H, et al. Rice phenolics efflux transporter 2 (PEZ2) plays an important role in solubilizing apoplasmic iron. Soil Science and Plant Nutrition, 2011, 57: 803-812 [53] Malhotra H, Pandey R, Sharma S, et al. Foliar fertilization: Possible routes of iron transport from leaf surface to cell organelles. Archives of Agronomy and Soil Science, 2020, 66: 279-300 [54] Nozoye T, Nakanishi H, Nishizawa NK. Characterizing the crucial components of iron homeostasis in the maize mutants ys1 and ys3. PLoS One, 2013, 8(5): e62567 [55] 左元梅, 张福锁. 不同禾本科作物与花生混作对花生根系质外体铁的累积和还原力的影响. 应用生态学报, 2004, 15(2): 221-225 [56] Clúa J, Montpetit J, Jimenez-Sandoval P, et al. A CYBDOM protein impacts iron homeostasis and primary root growth under phosphate deficiency in Arabidopsis. Nature Communications, 2024, 15: 423 [57] 吉文丽, 李卫忠, 朱清科, 等. 胡萝卜状根的生物学特性研究综述. 草业学报, 2008, 17(2): 118-125 [58] Hu D, Cui R, Wang K, et al. The Myb73-GDPD2-GA2ox1 transcriptional regulatory module confers phosphate deficiency tolerance in soybean. Plant Cell, 2024, 36: 2176-2200 [59] Li L, Pan S, Melzer R, et al. Apoplastic barriers, aquaporin gene expression and root and cell hydraulic conductivity in phosphate-limited sheepgrass plants. Physiologia Plantarum, 2020, 168: 118-132 [60] Hoehenwarter W, Mönchgesang S, Neumann S, et al. Comparative expression profiling reveals a role of the root apoplast in local phosphate response. BMC Plant Biology, 2016, 16: 1-21 [61] Szameitat AE, Sharma A, Minutello F, et al. Unravelling the interactions between nano-hydroxyapatite and the roots of phosphorus deficient barley plants. Environmental Science: Nano, 2021, 8: 444-459 [62] 肖宝莹, 王会志, 吴春燕, 等. 外源锌对番茄锌元素积累及吸收利用的影响. 吉林农业大学学报, 2025, DOI: 10.13327/j.jjlau.2024.20455 [63] Kimura S, Vaattovaara A, Ohshita T, et al. Zinc deficiency-induced defensin-like proteins are involved in the inhibition of root growth in Arabidopsis. The Plant Journal, 2023, 115: 1071-1083 [64] Stanton C, Sanders D, Krämer U, et al. Zinc in plants: Integrating homeostasis and biofortification. Molecular Plant, 2022, 15: 65-85 [65] Tan L, Qu M, Zhu Y, et al. ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in zinc/cadmium uptake. Plant Physiology, 2020, 183: 1235-1249 [66] Yang M, Li Y, Liu Z, et al. A high activity zinc transporter OsZIP9 mediates zinc uptake in rice. The Plant Journal, 2020, 103: 1695-1709 [67] Savic J, Pavlovic J, Stanojevic M, et al. Silicon differently affects apoplastic binding of excess boron in wheat and sunflower leaves. Plants, 2023, 12: 1660 [68] Gholamnejad S, Haghighi M, Etemadi N, et al. Effects of boron on nutrient partitioning, Ca movement, and fruit quality of tomatoes. Journal of Plant Nutrition, 2023, 46: 697-713 [69] 董肖昌, 姜存仓, 刘桂东, 等. 低硼胁迫对根系调控及生理代谢的影响研究进展. 华中农业大学学报, 2014, 33(3): 133-137 [70] Bolaños L, Abreu I, Bonilla I, et al. What can boron deficiency symptoms tell us about its function and regulation? Plants, 2023, 12: 777 [71] Gholamnejad S, Haghighi M, Etemadi N, et al. Effects of boron on nutrient partitioning, Ca movement, and fruit quality of tomatoes. Journal of Plant Nutrition, 2023, 46: 697-713 [72] Quiles-Pando C, Navarro-Gochicoa MT, Herrera-Rodríguez MB, et al. Boron deficiency increases cytosolic Ca2+ levels mainly via Ca2+ influx from the apoplast in Arabidopsis thaliana roots. International Journal of Molecular Sciences, 2019, 20: 2297 [73] Conn SJ, Gilliham M, Athman A, et al. Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. Plant Cell, 2011, 23: 240-257 |
[1] | WANG Zhiyao, ZHONG Yujun, WANG Yongfeng, XIE Ninghui, ZHANG Ying, JIANG Zhi-yang, SHI Rongjiu, LIANG Xiaolong. Ecological functions of plant-beneficial microbiomes and their application prospects in sustainable agriculture [J]. Chinese Journal of Applied Ecology, 2025, 36(5): 1553-1566. |
[2] | HUA Zhe, ZI Haiyun, LIAO Yangwenke, TANG Luozhong, LI Xiaogang. Research advances in functional processes and factors of rhizosphere microorganisms in regulating forest growth. [J]. Chinese Journal of Applied Ecology, 2024, 35(11): 3190-3198. |
[3] | CHEN Gang;XU Yang-chun;SHEN Qi-rong . Effects of N fertilization levels on ammonia volatilization from rice shoot at later growth stages. [J]. Chinese Journal of Applied Ecology, 2008, 19(07): 1483-1488 . |
[4] | XIA Yang, LIANG Huimin, WANG Taiming, SHU Huairui, WANG Qinghua, CHAI Chuanhua . Effects of NaCl stress on Ca,Mg,Fe and Zn contents of different apple organs [J]. Chinese Journal of Applied Ecology, 2005, 16(3): 431-434. |
[5] | XIA Yang1,LIANG Huimin1,WANG Taiming1,SHU Huairui2,WANG Qinghua1, CHAI Chuanhua1. Effects of NaCl stress on Ca,Mg,Fe and Zn contents of different apple organs [J]. Chinese Journal of Applied Ecology, 2005, 16(03): 431-434 . |
[6] | ZUO Yuanmei, ZHANG Fusuo. Effects of peanut mixed cropping with different gramineous plants on apoplast iron accumulation and reducing capacity of peanut. [J]. Chinese Journal of Applied Ecology, 2004, (2): 221-225. |
[7] | ZUO Yuanmei, ZHANG Fusuo. Effects of peanut mixed cropping with different gramineous plants on apoplast iron accumulation and reducing capacity of peanut. [J]. Chinese Journal of Applied Ecology, 2004, (2): 221-225. |
[8] | DAI Tingbo, CAO Weixing, SUN Chuanfan . Effects of enhanced ammonium nutrition on content and accumulation of nitrogen and mineral nutrients in wheat plant [J]. Chinese Journal of Applied Ecology, 2002, (3): 382-384. |
[9] | DAI Tingbo, CAO Weixing, SUN Chuanfan . Effects of enhanced ammonium nutrition on content and accumulation of nitrogen and mineral nutrients in wheat plant [J]. Chinese Journal of Applied Ecology, 2002, (3): 382-384. |
[10] | LIU Qin, ZHANG Xin, ZHAO Yanwen, HU Zhengyi, WANG Xiaochang, CAO Zhihong . Relationships between soil-plant nutrition,quality of agricultural products and human and livestock health [J]. Chinese Journal of Applied Ecology, 2001, 12(4): 623-626. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||