[1] Lu XM, Siemann E, Shao X, et al. Climate warming affects biological invasions by shifting interactions of plants and herbivores. Global Change Biology, 2013, 19: 2339-2347 [2] Ren GQ, Yang B, Cui MM, et al. Warming and elevated nitrogen deposition accelerate the invasion process of Solidago canadensis L. Ecological Processes, 2022, 11: 62 [3] 刘艳杰, 黄伟, 杨强, 等. 近十年植物入侵生态学重要研究进展. 生物多样性, 2022, 30(10): 276-292 [4] Shabani F, Ahmadi M, Kumar L, et al. Invasive weed species’ threats to global biodiversity: Future scenarios of changes in the number of invasive species in a changing climate. Ecological Indicators, 2020, 116: 106436 [5] Paini DR, Sheppard AW, Cook DC, et al. Global threat to agriculture from invasive species. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 7575-7579 [6] 刘琴. 中国外来入侵植物的地理分布格局研究. 硕士论文. 长沙: 中南林业科技大学, 2023 [7] Chen C, Wang QH, Wu JY, et al. Historical introduction, geographical distribution, and biological characteristics of alien plants in China. Biodiversity and Conservation, 2017, 26: 353-381 [8] Hulme PE. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. Journal of Applied Ecology, 2009, 46: 10-18 [9] 农业农村部, 自然资源部, 生态环境部, 等. 重点管理外来入侵物种名录 [EB/OL]. (2022-10-10) [2024-01-01]. http://www.moa.gov.cn/govpublic/KJJYS/202211/t20221109_6415160.htm [10] Kato-Noguchi H, Kurniadie D. The invasive mechanisms of the noxious alien plant species Bidens pilosa. Plants, 2024, 13: 356 [11] Ballard R. Bidens pilosa complex (Asteraceae) in North and Central America. American Journal of Botany, 1986, 73: 1452-1465 [12] 王桔红, 史生晶, 陈文, 等. 鬼针草与含羞草化感作用及其入侵性的研究. 草业学报, 2020, 29(4): 81-91 [13] 王小飞, 王涛, 王琦, 等. 白花鬼针草入侵对植物群落结构及物种多样性的影响. 生物安全学报, 2023, 32(4): 384-392 [14] 岳茂峰, 冯莉, 崔烨, 等. 基于MaxEnt模型的入侵植物白花鬼针草的分布预测及适生性分析. 生物安全学报, 2016, 25(3): 222-228 [15] 陈程浩, 龙主多杰, 陆徐伟, 等. 基于优化MaxEnt模型的中国紫堇属植物生境适宜性研究. 生态学报, 2023, 43(24): 10345-10362 [16] Gogol-Prokurat M. Predicting habitat suitability for rare plants at local spatial scales using a species distribution model. Ecological Applications, 2011, 21: 33-47 [17] Bartolome AP, Villaseñor IM, Yang WC. Bidens pilosa L.(Asteraceae): Botanical properties, traditional uses, phytochemistry, and pharmacology. Evidence-Based Complementary and Alternative Medicine, 2013, 2013: 340215 [18] 王碧晴, 赵俊男, 张颖, 等. 鬼针草的药理作用研究进展. 中医药导报, 2019, 25(18): 100-103 [19] Warren DL, Seifert SN. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecological Applications, 2011, 21: 335-342 [20] 张保得, 蔡吹, 谢准, 等. 气候变化情景下滇重楼在中国的适生性分析. 植物遗传资源学报, 2024, 25(9): 1601-1612 [21] Gao FL, Roiloa S, Xia JB, et al. Effects of native species richness on reproduction of invasive Bidens pilosa vary with nutrient supply. Ecological Processes, 2024, 13: 46 [22] Jiménez-Valverde A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography, 2012, 21: 498-507 [23] Syfert MM, Smith MJ, Coomes DA. The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS One, 2013, 8(7): e55158 [24] Beck J, Böller M, Erhardt A, et al. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecological Informatics, 2014, 19: 10-15 [25] 李晓霞, 胡宽义, 曾安逸, 等. 基于MaxEnt模型预测海南外来入侵植物新纪录种:沼生金钮扣在中国的潜在适生区. 热带作物学报, 2024, 45(9): 1989-1997 [26] 李建宇, 赵建伟, 于文涛, 等. 基于MaxEnt模型预测气候变化下飞扬草在中国的潜在地理分布. 植物保护学报, 2023, 50(6): 1540-1547 [27] 杨振扬, 魏有海, 郭良芝, 等. 基于优化MaxEnt模型的紫茎泽兰在中国的潜在适生区分布预测. 内蒙古农业大学学报:自然科学版, 2025, 46(1): 49-56 [28] 袁喆, 严登华, 杨志勇, 等. 1961—2010 年中国400 mm和800 mm等雨量线时空变化. 水科学进展, 2014, 25(4): 494-502 [29] He Z, Zhou T, Chen JQ, et al. Impacts of climate warming and humidification on vegetation activity over the Tibetan Plateau. Forests, 2023, 14: 2055 [30] Chu QS, Liu YJ, Peng CY, et al. Invasive alien plants in the Qinghai-Tibetan Plateau (China): Current state and future predictions. Ecological Indicators, 2024, 166: 112488 [31] 杨乐. 基于集合模型预测外来植物反枝苋的入侵趋势. 生态环境学报, 2024, 33(6): 888-899 [32] 王俊伟, 陈永豪, 许敏, 等. 气候变化背景下入侵植物曼陀罗在西藏的潜在风险区预测. 生态学报, 2023, 43(20): 8620-8630 [33] 肖麒, 章梦婷, 吴翼, 等. 基于生态位模型的外来入侵种克氏原螯虾在中国的适生区预测. 应用生态学报, 2020, 31(1): 309-318 [34] 张丹华, 胡远满, 刘淼. 基于Maxent生态位模型的互花米草在我国沿海的潜在分布. 应用生态学报, 2019, 30(7): 2329-2337 [35] 鲁客, 贺一鸣, 毛伟, 等. 未来气候变化下黑沙蒿在中国的潜在地理分布及变迁. 应用生态学报, 2020, 31(11): 3758-3766 [36] 李建宇, 陈燕婷, 郭燕青, 等 基于Maxent预测未来气候条件下钻叶紫菀在中国的潜在适生区. 植物保护, 2023, 49(2): 92-102 |