Chinese Journal of Applied Ecology ›› 2025, Vol. 36 ›› Issue (6): 1859-1870.doi: 10.13287/j.1001-9332.202506.035
• Original Articles • Previous Articles Next Articles
LI Erheng1,2, SUN Zhigao1,2,3*, WU Huihui1,2, FANG Guanrong1,2, YAO Qinyu1,2, LI Yajin1,2, ZHONG Xiaoying1,2
Received:
2025-01-12
Accepted:
2025-04-06
Online:
2025-06-18
Published:
2025-12-18
LI Erheng, SUN Zhigao, WU Huihui, FANG Guanrong, YAO Qinyu, LI Yajin, ZHONG Xiaoying. Impacts of nitrogen addition on variations of inorganic sulfur forms in soils of Cyperus malaccensis marsh in the Minjiang estuary during summer[J]. Chinese Journal of Applied Ecology, 2025, 36(6): 1859-1870.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202506.035
[1] Liu CJ, Li P, Xie WX, et al. Changes of sulfur fractions in sediment following Spartina alterniflora invasion in a seaward direction in a temperate salt marsh, China. Ecological Indicators, 2021, 131: 108217 [2] 武慧慧, 孙志高, 李新华, 等. 黄河口新生湿地土壤中各形态硫的分布特征及其影响因素. 湿地科学, 2024, 22(3): 337-348 [3] Sun ZG, Sun WG, Tong C, et al. China’s coastal wetlands: Conservation history, implementation efforts, existing issues and strategies for future improvement. Environment International, 2015, 79: 25-41 [4] Raimundo J, Miguel M, Sandra B, et al. Sulfur signature of a Mediterranean wetland: The case of soils of the inundated floodplain area at the Tablas De Daimiel National Park. Water, Air, & Soil Pollution, 2024, 235: 1-14 [5] Miguel AH, Richard C. Geochemistry of trace metals associated with reduced sulfur in freshwater sediments. Applied Geochemistry, 1998, 13: 213-233 [6] Krairapanond N, Delaune RD, Patrick WH. Seasonal distribution of sulfur fractions in Louisiana salt marsh soils. Estuaries, 1991, 14: 17-28 [7] Johnson CM, Nishita H. Microestimation of sulfur in plant materials, soils, and irrigation waters. Analytical Chemistry, 1952, 24: 736-742 [8] Arndt W, Peter K, Jochen AM, et al. The sulfur depot in the rhizosphere of a common wetland plant, Juncus effusus, can support long-term dynamics of inorganic sulfur transformations. Chemosphere, 2017, 184: 375-383 [9] Karimian N, Johnston SG, Burton ED, et al. Iron and sulfur cycling in acid sulfate soil wetlands under dynamic redox conditions: A review. Chemosphere, 2018, 197: 803-816 [10] Lindelien CM, Xu XY, Anna S, et al. Seasonal sulfur redox cycling in two constructed wetlands with insight on how they age. Bulletin of Environmental Contamination and Toxicology, 2024, 113: 34 [11] Ganguly D, Ray R, Majumdar N, et al. Biogenic hydrogen sulphide emissions and non-sea sulfate aerosols over the Indian Sundarban mangrove forest. Journal of Atmospheric Chemistry, 2018, 75: 319-333 [12] Padhy SR, Bhattacharyya P, Dash PK, et al. Elucidation of dominant energy metabolic pathways of methane, sulphur and nitrogen in respect to mangrove-degradation for climate change mitigation. Journal of Environmental Management, 2022, 303: 114151 [13] Lehnert A, Cooper RE, Ignatz R, et al. Dimethyl sulfide emissions from a peatland result more from organic matter degradation than sulfate reduction. Journal of Geophysical Research: Biogeosciences, 2024, 129: e2023JG007449 [14] Zhang XW, Ji Z, Yang XJ, et al. Deciphering the spatial distribution and function profiles of soil bacterial community in Liao River estuarine wetland, Northeast China. Marine Pollution Bulletin, 2024, 199: 115984 [15] Chen KK, Zhu MX, Yang GP, et al. Spatial distribution of organic and pyritic sulfur in surface sediments of eutrophic Jiaozhou Bay, China: Clues to anthropogenic impacts. Marine Pollution Bulletin, 2014, 88: 284-291 [16] Lu QQ, Bai JH, Fang HJ, et al. Spatial and seasonal distributions of soil sulfur in two marsh wetlands with different flooding frequencies of the Yellow River Delta, China. Ecological Engineering, 2016, 96: 63-71 [17] Jian S, Zhang HH, Yang GP, et al. Variation of biogenic dimethylated sulfur compounds in the Changjiang River Estuary and the coastal East China Sea during spring and summer. Journal of Marine Systems, 2019, 199: 103222 [18] Wu HH, Sun ZG, Wang H, et al. Impacts of spatial expansion by Phragmites australis on spatiotemporal variation of sulfur fractions in marsh soils of the Min River estuary, Southeast China. Science of the Total Environment, 2023, 912: 168910 [19] 李新华 郭洪海, 杨丽萍, 等. 黄河三角洲翅碱篷湿地硫化氢和羰基硫排放动态研究. 环境科学, 2014, 35(2): 786-791 [20] 孙志高, 胡星云, 师自香, 等. 闽江河口不同湿地近地气层中H2S浓度日变化特征. 环境科学学报, 2022, 42(2): 366-373 [21] Yu Q, Wang WJ, Chang JL, et al. Surface-air exchanges of H2S and SO2 in an urban wetland in eastern China. Science of the Total Environment, 2024, 951: 175701 [22] 夏星辰, 孙志高, 胡星云, 等. 氮负荷增强对闽江河口湿地植物-土壤系统硫分布及其转运特征的影响. 环境科学学报, 2023, 43(6): 483-493 [23] Li YH, Hua J, Tao YX, et al. Invasion mechanism of Spartina alterniflora by regulating soil sulfur and iron cycling and microbial composition in the Jiuduansha Wetland. Environmental Science and Pollution Research, 2024, 31: 14775-14790 [24] Pan F, Xiao K, Cai Y, et al. Integrated effects of bioturbation, warming and sea-level rise on mobility of sulfide and metalloids in sediment porewater of mangrove wetlands. Water Research, 2023, 233: 119788 [25] 王华, 孙志高, 李家兵, 等. 闽江口芦苇与短叶茳芏湿地土壤无机硫形态分布特征及其影响因素. 生态学报, 2019, 39(13): 4921-4932 [26] 武慧慧, 孙志高, 孙文广, 等. 黄河口生态恢复工程对湿地土壤不同形态无机硫动态变化的影响. 水土保持学报, 2020, 34(6): 150-158 [27] Yu GR, Jia YL, He NP, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 2019, 12: 424-429 [28] 段雷, 郝吉明, 谢绍东, 等. 用稳态法确定中国土壤的硫沉降和氮沉降临界负荷. 环境科学, 2002, 23(2): 7-12 [29] 中国海洋信息网. 2017年中国海洋生态环境状况公报[EB/OL]. (2018-06-06) [2025-01-08]. http://www.nmdis.org.cn/ [30] Mou XJ, Liu XT, Sun ZG, et al. Short-term effect of exogenous nitrogen on N2O fluxes from native and invaded tidal marshes in the Min River estuary, China. Wetlands, 2019, 39: 139-148 [31] 何涛, 孙志高, 李家兵, 等. 闽江河口不同淹水环境下典型湿地植物-土壤系统全硫含量空间分布特征. 水土保持学报, 2016, 30(5): 246-254 [32] Wu XT, Sun ZG, Wang H, et al. Spatial and temporal variations of sulfur in plant-soil systems of Phragmites australis and Cyperus malaccensis marshes in a typical subtropical Estuary (Min River), China. Wetlands, 2020, 40: 1283-1293 [33] 童晓雨, 孙志高, 曾阿莹, 等. 闽江河口互花米草海向入侵对湿地土壤无机硫赋存形态的影响. 应用生态学报, 2019, 30(10): 3518-3526 [34] 毛立, 孙志高, 陈冰冰,等. 闽江河口互花米草入侵湿地土壤无机硫赋存形态及其影响因素. 生态学报, 2021, 41(12): 4840-4852 [35] 徐昌城. 福建省闽江流域氮足迹动态变化及其影响因素分析. 博士论文. 福州: 福州大学, 2017 [36] 郑小宏. 闽江口海域氮磷营养盐含量的变化及富营养化特征. 台湾海峡, 2010, 29(1): 42-46 [37] 李爱萍, 黄广华, 高人, 等. 福州、建瓯和武夷山大气氮/硫湿沉降特征分析. 亚热带资源与环境学报, 2015, 10(3): 33-40 [38] Nash JE, River flow forecasting through conceptual models. Part 1-A discussion of principles. Journal of Hydro-logy, 1970, 10: 282-290 [39] Wu JJ, Zhang H, Cheng XL, et al. Nitrogen addition stimulates litter decomposition rate: From the perspective of the combined effect of soil environment and litter quality. Soil Biology and Biochemistry, 2023, 179: 108992 [40] Hu XY, Sun ZG. Effects of exogenous nitrogen import on variations of nutrient in decomposing litters of Suaeda salsa in coastal marsh of the Yellow River estuary, China. Environmental Science and Pollution Research, 2021, 28: 33165-33180 [41] 师自香. 氮负荷增强对闽江河口短叶茳芏残体分解及主要元素变化的影响. 硕士论文. 福州: 福建师范大学, 2023 [42] 贺攀霏, 孙志高, 宋振阳, 等. 不同氮负荷水平下闽江河口芦苇残体分解及硫养分释放特征. 环境科学学报, 2024, 44(3): 387-398 [43] 张林海, 曾从盛, 张文娟, 等. 闽江河口湿地枯落物分解及主要影响因子. 应用生态学报, 2012, 23(9): 2404-2410 [44] 王丽霞, 郭宏宇, 霍玉珠, 等. 增温和增氮对天津滨海湿地芦苇凋落物分解微生物群落组成和多样性的影响. 天津师范大学学报: 自然科学版, 2022, 42(1): 37-44 [45] Koceja ME, Bledsoe RB, Goodwillie C, et al. Distinct microbial communities alter litter decomposition rates in a fertilized coastal plain wetland. Ecosphere, 2021, 12: 1-18 [46] Li TP, Liu HY, Wang RZ, et al. Frequency and intensity of nitrogen addition alter soil inorganic sulfur fractions, but the effects vary with mowing management in a temperate steppe. Biogeosciences, 2019, 16: 2891-2904 [47] 陈冰冰, 孙志高. 黄河口碱蓬湿地土壤硫矿化特征对外源氮输入的响应. 生态学报, 2021, 41(3): 1032-1041 [48] 褚磊, 于君宝, 管博. 土壤有机硫矿化研究进展. 土壤通报, 2014, 45(1): 240-245 [49] Chen BB, Sun ZG. Effects of nitrogen enrichment on variations of sulfur in plant-soil system of Suaeda salsa in coastal marsh of the Yellow River estuary, China. Ecological Indicators, 2020, 109: 105797 [50] Zhang JM, Chi FQ, Zhou BK, et al. Sulfur bioavailability of black soil in northeast China. Soil and Plant Science, 2014, 63: 172-179 [51] Kangho J, Yong SO, Scott XC. Sulfate adsorption properties of acid-sensitive soils in the Athabasca oil sands region in Alberta, Canada. Chemosphere, 2011, 84: 457-463 [52] 赵静. 模拟氮沉降对长白山苔原带灌草混合群落优势种生长特征的影响. 硕士论文. 上海: 东北师范大学, 2021 [53] Feng HY, Zhang TG, Xia L, et al. Effects of coastal embankments on seasonal variations in nitrogen storage in the plant-soil systems of Suaeda salsa salt marshes in Eastern China. Ecological Engineering, 2024, 199: 107168 [54] 吴文菲, 刘波, 李红军, 等. pH、盐度对微生物还原硫酸盐的影响研究. 环境工程学报, 2011, 5(11): 2527-2531 [55] 王永杰, 郑祥民, 周立旻, 等. 长江河口盐沼湿地酸挥发性硫化物的时空分布特征及影响因素. 地球化学, 2012, 41(2): 158-165 [56] Bowman WD, Cleveland CC, Halada Ĺ, et al. Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience, 2008, 1: 767-770 [57] Lennart G, Heather T, Matthias K, et al. Sulfate mobility in fen peat and its impact on the release of solutes. Frontiers in Environmental Science, 2019, 7: 189 [58] 胡星云. 氮输入情景下闽江河口湿地土壤硫赋存特征及其主要影响机制. 博士论文. 福州: 福建师范大学, 2024 [59] 郝庆菊, 王起超, 王跃思. 三江平原典型湿地土壤中硫的分布特征. 土壤通报, 2004, 35(3): 331-335 [60] Johnston SG, Burton ED, Aaso T, et al. Sulfur, iron and carbon cycling following hydrological restoration of acidic freshwater wetlands. Chemical Geology, 2014, 32: 17-26 [61] Eriksson PG, Svensson JM, Carrer GM. Temporal changes and spatial variation of soil oxygen consumption, nitrification and denitrification rates in a tidal salt marsh of the Lagoon of Venice, Italy. Estuarine, Coastal and Shelf Science, 2004, 58: 861-872 [62] Koretsky CM, Moore CM, Lowe KL, et al. Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA). Biogeochemistry, 2003, 64: 179-203 |
[1] | LI Lin, SUN Yi, YANG Xiaoqiong, FANG Haidong, SHI Liangtao, HE Guangxiong, YU Jianlin, YAN Bangguo. Effects of nitrogen addition on Arachis hypogaea “Qicai”-rhizobia symbiosis and biomass allocation [J]. Chinese Journal of Applied Ecology, 2025, 36(4): 1109-1117. |
[2] | WU Yuanxiu, LIU Jingtong, DING Cong, ZHANG Bingchuan, LIANG Xiaosa, NING Yu, YIN Jiangxia, LV Xiaotao. Effects of nitrogen inputs and mowing on the abundance and species richness of herbivorous insects in a meadow steppe [J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1975-1980. |
[3] | LIU Shanshan, WANG Quancheng, SHI Jiamian, LIU Zikai, SHEN Jupei, HE Jizheng, ZHENG Yong. Responses of root-associated fungal community structure of mycorrhizal plants to nitrogen and/or phosphorus addition in a subtropical forest [J]. Chinese Journal of Applied Ecology, 2023, 34(6): 1547-1554. |
[4] | CHEN Tian, CHENG Ruimei, SHEN Yafei, XIAO Wenfa, WANG Lijun, SUN Pengfei, ZHANG Meng, LI Jing. Effects of nitrogen addition on acidolyzable organic nitrogen components and nitrogen mineralization in aggregates of Pinus massoniana plantations in the Three Gorges Reservoir area, China [J]. Chinese Journal of Applied Ecology, 2023, 34(10): 2601-2609. |
[5] | ZHANG Xiao-qing, ZENG Quan-xin, YUAN Xiao-cun, WAN Xiao-hua, CUI Ju-yan, LI Wen-zhou, LIN Hui-ying, XIE Huan, CHEN Wen-wei, WU Jun-mei, CHEN Yueh-min. Phosphorus limitation induced by nitrogen addition changed soil microbial community structure in a subtropical Pinus taiwanensis forest [J]. Chinese Journal of Applied Ecology, 2023, 34(1): 203-212. |
[6] | ZENG Quan-xin, YUAN Xiao-chun, ZHOU Jia-cong, WU Jun-mei, LI Wen-zhou, LIN Hui-ying, ZHANG Xiao-qing, CHEN Yueh-min. Effects of nitrogen addition on the kinetic parameters of soil acid phosphomonoesterase in a Moso bamboo forest [J]. Chinese Journal of Applied Ecology, 2022, 33(8): 2178-2186. |
[7] | FENG Meng-meng, LIN Yong-xin, HE Zi-yang, LIU Xiao-fei, CHEN Shi-dong, WAN Song, DUAN Chun-jian, YE Gui-ping, HE Ji-zheng. Responses of soil ammonia-oxidizing microorganisms to simulated nitrogen deposition in a natural Castanopsis carlesii forest [J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1622-1628. |
[8] | MAO Li, SUN Zhi-gao, CHEN Bing-bing, HU Xing-yun, WU Hui-hui. Sulfur oxidation-reduction process and its coupling effects with other elements in marsh soil: A review [J]. Chinese Journal of Applied Ecology, 2022, 33(2): 560-568. |
[9] | MA Cheng-xiang, ZHOU Guang-sheng, SONG Xing-yang, LYU Xiao-min. Effects of warming, photoperiod, and nitrogen addition on the main phenological phases of Quercus mongolica [J]. Chinese Journal of Applied Ecology, 2022, 33(12): 3220-3228. |
[10] | DAI Hui, ZENG Quan-xin, ZHOU Jia-cong, PENG Yuan-zhen, SUN Xue-qi, CHEN Jing-qi, CHEN Wen-wei, CHEN Yueh-min. Responses of soil microbial carbon use efficiency to short-term nitrogen addition in Castanopsis fabri forest [J]. Chinese Journal of Applied Ecology, 2022, 33(10): 2611-2618. |
[11] | DENG Mi-lin, FENG Meng-meng, LIU Xiao-fei, CHEN Shi-dong, HE Ji-zheng, LIN Yong-xin. Simulated nitrogen deposition reduces potential nitrous oxide emissions in a natural Castanopsis carlesii forest soil [J]. Chinese Journal of Applied Ecology, 2022, 33(10): 2705-2710. |
[12] | WANG Li-jun, CHENG Rui-mei, XIAO Wen-fa, SUN Peng-fei, SHEN Ya-fei, ZENG Li-xiong, CHEN Tian. Effects of nitrogen addition on soil microbial biomass and enzyme activities of Pinus massoniana-Quercus variabilis mixed plantations in the Three Gorges Reservoir Area [J]. Chinese Journal of Applied Ecology, 2022, 33(1): 42-50. |
[13] | GENG Qian-qian, WANG Yin-liu, NIU Guo-xiang, WANG Nan-nan, HASI Muqier, LI Ang, HUANG Jian-hui. Effects of long-term nitrogen addition on the nitrogen pools in a meadow steppe ecosystem [J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2783-2790. |
[14] | WANG Yan, DIAO Hua-jie, DONG Kuan-hu, WANG Chang-hui, ZHAO Wei. Effects of precipitation change and nitrogen addition on soil net N mineralization in a saline-alkaline grassland of Northern Shanxi Province, China [J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2389-2396. |
[15] | ZENG Quan-xin, ZHANG Qiu-fang, LIN Kai-miao, ZHOU Jia-cong, YUAN Xiao-cun, MEI Kong-can, WU Yue, CUI Ju-yan, XU Jian-guo, CHEN Yueh-min. Enzyme stoichiometry evidence revealed that five years nitrogen addition exacerbated the carbon and phosphorus limitation of soil microorganisms in a Phyllostachys pubescens forest [J]. Chinese Journal of Applied Ecology, 2021, 32(2): 521-528. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||