Chinese Journal of Applied Ecology ›› 2025, Vol. 36 ›› Issue (7): 2246-2256.doi: 10.13287/j.1001-9332.202507.007
• Reviews • Previous Articles
YIN Congpei1, SHI Zhaojin1, TIAN Cheng1, CHEN Congcong1, LI Dongxiao1, DONG Weixin2, ZHANG Yuechen1*
Received:
2025-02-19
Accepted:
2025-05-13
Online:
2025-07-18
Published:
2026-01-18
YIN Congpei, SHI Zhaojin, TIAN Cheng, CHEN Congcong, LI Dongxiao, DONG Weixin, ZHANG Yuechen. Effects of red and blue light on photosynthetic carbon assimilation and growth-development in plants: A review[J]. Chinese Journal of Applied Ecology, 2025, 36(7): 2246-2256.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202507.007
[1] Anpo M, Fukuda H, Wada T. Plant Factory Using Artificial Light. Amsterdam: Elsevier, 2019: 47-69 [2] Wang SY, Meng X, Tang ZQ, et al. Red and blue LED light supplementation in the morning pre-activates the photosynthetic system of tomato (Solanum lycopersicum L.) leaves and promotes plant growth. Agronomy, 2022, 12: 897 [3] Demotes MS, Peron T, Corot A, et al. Plant responses to red and far-red lights, applications in horticulture. Environmental and Experimental Botany, 2016, 121: 4-21 [4] Mishra S, Khurana JP. Emerging roles and new paradigms in signaling mechanisms of plant cryptochromes. Critical Reviews in Plant Sciences, 2017, 36: 89-115 [5] Izzo LG, Mickens MA, Aronne G, et al. Spectral effects of blue and red light on growth, anatomy, and physiology of lettuce. Physiologia Plantarum, 2021, 172: 2191-2202 [6] Miao LX, Zhang YC, Yang XF, et al. Colored light-quality selective plastic films affect anthocyanin content, enzyme activities, and the expression of flavonoid genes in strawberry (Fragaria×ananassa) fruit. Food Chemistry, 2016, 207: 93-100 [7] Paradiso R, Proietti S. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern led systems. Journal of Plant Growth Regulation, 2022, 41: 742-780 [8] Alrajhi AA, Alsahli AS, Alhelal IM, et al. The effect of LED light spectra on the growth, yield and nutritional value of red and green lettuce (Lactuca sativa). Plants, 2023, 12: 463 [9] Nguyen PNT, Sung J. Light spectral-ranged specific metabolisms of plant pigments. Metabolites, 2024, 15: 1 [10] Huq E, Al-Sady B, Hudson M, et al. Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science, 2004, 305: 1937-1941 [11] Liu XQ, Li Y, Zhong SW. Interplay between light and plant hormones in the control of Arabidopsis seedling chlorophyll biosynthesis. Frontiers in Plant Science, 2017, 8: 1433 [12] Jiang ZM, Xu G, Jing YJ, et al. Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis. Nature Communications, 2016, 7: 12377 [13] Yasuhito S, Jinkil J, Min-Young K, et al. Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nature Communications, 2014, 5: 4636 [14] 屈成, 刘芬, 陈光辉, 等. LED红蓝光质对水稻幼苗生长及生理特性的影响. 核农学报, 2020, 34(9): 2095-2102 [15] 方临志, 马稚昱, 年海, 等. 光质对菜用大豆苗期光形态建成及根冠比的影响. 大豆科学, 2018, 37(3): 366-372 [16] 孟畅, 赵杨, 杨菊, 等. 光质对皂荚幼苗生长发育、光合特性及相关生理指标的影响. 植物生理学报, 2022, 58(10): 1961-1972 [17] Kobayashi K, Amore T, Lazaro M. Light-emitting diodes (leds) for miniature hydroponic lettuce. Optics and Photonics Journal, 2013, 3: 74-77 [18] Tian YY, Wang HY, Sun P, et al. Response of leaf co-lor and the expression of photoreceptor genes of Camellia sinensis cv. Huangjinya to different light quality conditions. Scientia Horticulturae, 2019, 251: 225-232 [19] Ren MF, Liu SZ, Tang CZ, et al. Photomorphogenesis and photosynthetic traits changes in rice seedlings responding to red and blue light. International Journal of Molecular Sciences, 2023, 24: 11333 [20] Eskins K, Cai ZH, Shibles R, et al. Light-quality and irradiance effects on pigments, light-harvesting proteins and Rubisco activity in a chlorophyll-and light-harvesting-deficient soybean mutant. Physiologia Plantarum, 1991, 83: 47-53 [21] 陈祥伟, 刘世琦, 王越, 等. 不同LED光源对乌塌菜生长、光合特性及营养品质的影响. 应用生态学报, 2014, 25(7): 1955-1962 [22] Wang SL, Liu XT, Liu XN, et al. The red/blue light ratios from light-emitting diodes affect growth and flower quality of Hippeastrum hybridum ‘Red Lion’. Frontiers in Plant Science, 2022, 13: 1048770 [23] Ngcobo BL, Bertling I, Clulow AD. Post-harvest alterations in quality and health-related parameters of cherry tomatoes at different maturity stages following irradiation with red and blue LED lights. Journal of Horticultural Science and Biotechnology, 2021, 96: 383-391 [24] Xiang N, Zhao YH, Wang SY, et al. The modulation of light quality on carotenoids in maize (Zea mays L.) sprouts. Food Chemistry: Molecular Sciences, 2022, 5: 100128 [25] Rocio Q, Claudia S. Carotenoid biosynthesis and plastid development in plants: The role of light. International Journal of Molecular Sciences, 2021, 22: 1184 [26] 余婷, 陈鹏飞, 闵腾辉, 等. 光质对豌豆芽苗菜生长与生理特性的影响. 农业工程, 2021, 11(5): 137-143 [27] Yao XY, Liu XY, Xu ZG, et al. Effects of light intensity on leaf microstructure and growth of rape seedlings cultivated under a combination of red and blue LEDs. Journal of Integrative Agriculture, 2017, 16: 97-105 [28] Miao YX, Chen QY, Qu M, et al. Blue light alleviates ‘red light syndrome’ by regulating chloroplast ultrastructure, photosynthetic traits and nutrient accumulation in cucumber plants. Scientia Horticulturae, 2019, 257: 108680 [29] 樊小雪, 高文瑞, 孙艳军, 等. 不同光质对小白菜叶片发育和光合作用的影响. 信阳师范学院学报, 2018, 31(4): 562-567 [30] Chen LL, Zhang K, Gong XC, et al. Effects of different LEDs light spectrum on the growth, leaf anatomy, and chloroplast ultrastructure of potato plantlets in vitro and minituber production after transplanting in the greenhouse. Journal of Integrative Agriculture, 2020, 19: 108-119 [31] Li Y, Liu ZL, Shi Q, et al. Mixed red and blue light promotes tomato seedlings growth by influencing leaf anatomy, photosynthesis, CO2 assimilation and endogenous hormones. Scientia Horticulturae, 2021, 290: 110500 [32] Chen YY, Zhou B, Li JL, et al. Formation and change of chloroplast-located plant metabolites in response to light conditions. International Journal of Molecular Sciences, 2018, 19: 654 [33] Kochetova GV, Belyaeva OB, Gorshkova DS, et al. Long-term acclimation of barley photosynthetic apparatus to narrow-band red and blue light. Photosynthetica, 2018, 56: 851-860 [34] Li HM, Xu ZG, Tang CM. Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell, Tissue and Organ Culture, 2010, 103: 155-163 [35] Gao S, Liu XN, Liu Y, et al. Photosynthetic characte-ristics and chloroplast ultrastructure of welsh onion (Allium fistulosum L.) grown under different LED wavelengths. BMC Plant Biology, 2020, 20: 78 [36] Kinoshita T, Doi M, Suetsugu N, et al. Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature, 2001, 414: 656-660 [37] Zeiger E, Field C. Photocontrol of the functional coupling between photosynthesis and stomatal conductance in the intact leaf blue light and par-dependent photosystems in guard cells. Plant Physiology, 1982, 70: 370-375 [38] Muneer S, Kim E, Park J, et al. Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). International Journal of Molecular Sciences, 2014, 15: 4657-4670 [39] 李慧敏, 陆晓民, 高清海, 等. 不同光质对黄秋葵幼苗生长、光合色素和气孔特征的影响. 草业学报, 2016, 25(6): 62-70 [40] Fan XX, Xu ZG, Liu XY, et al. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Scientia Horticulturae, 2013, 153: 50-55 [41] Evans JR, Morgan PB, Susanne VC. Light quality affects chloroplast electron transport rates estimated from chl fluorescence measurements. Plant and Cell Physiology, 2017, 58: 1652-1660 [42] 王丽伟, 李岩, 辛国凤, 等. 不同比例红蓝光对番茄幼苗生长和光合作用的影响. 应用生态学报, 2017, 28(5): 1595-1602 [43] 刘庆, 连海峰, 刘世琦, 等. 不同光质LED光源对草莓光合特性、产量及品质的影响. 应用生态学报, 2015, 26(6): 1743-1750 [44] Hamdani S, Khan N, Perveen S, et al. Changes in the photosynthesis properties and photoprotection capacity in rice (Oryza sativa) grown under red, blue, or white light. Photosynthesis Research, 2018, 139: 107-121 [45] Zheng L, Steppe K, van Labeke MC. Spectral quality of monochromatic LED affects photosynthetic acclimation to high-intensity sunlight of Chrysanthemum and Spathiphyllum. Physiologia Plantarum, 2020, 169: 10-26 [46] 白生文, 许耀照, 张文斌, 等. 光质对甜椒幼苗生长生理及抗氧化性的影响. 干旱地区农业研究, 2017, 35(6): 146-153 [47] Miao YX, Wang XZ, Gao LH, et al. Blue light is more essential than red light for maintaining the activities of photosystem Ⅱ and Ⅰ and photosynthetic electron transport capacity in cucumber leaves. Journal of Integrative Agriculture, 2015, 15: 87-100 [48] 张曦文, 陈发兴. 光质对苗期玉米叶片气孔和光合作用及叶绿素荧光的影响. 福建果树, 2018(6): 13-18 [49] Li Y, Xin GF, Liu C, et al. Effects of red and blue light on leaf anatomy, CO2 assimilation, and the photosynthetic electron transport capacity of sweet pepper (Capsicum annuum L.) seedlings. BMC Plant Biology, 2020, 20: 1-16 [50] 张勇, 叶芝兰, 杨峰, 等. 不同光质配比对大豆幼苗形态及光合生理参数的影响. 中国油料作物学报, 2014, 36(3): 343-348 [51] Yu WW, Liu Y, Song LL, et al. Effect of differential light quality on morphology, photosynthesis, and antioxi-dant enzyme activity in Camptotheca acuminata seedlings. Journal of Plant Growth Regulation, 2017, 36: 148-160 [52] Yoshida H, Mizuta D, Fukuda N, et al. Effects of varying light quality from single-peak blue and red light-emitting diodes during nursery period on flowering, photosynthesis, growth, and fruit yield of everbearing strawberry. Plant Biotechnology, 2016, 33: 267-276 [53] 闫萌萌, 王铭伦, 王洪波, 等. 光质对花生幼苗叶片光合色素含量及光合特性的影响. 应用生态学报, 2014, 25(2): 483-487 [54] Shimazaki K, Doi M, Assmann SM, et al. Light regulation of stomatal movement. Annual Review of Plant Bio-logy, 2007, 58: 219-247 [55] Hosotani S, Yamauchi S, Kobayashi H, et al. A BLUS1 kinase signal and a decrease in intercellular CO2 concentration are necessary for stomatal opening in response to blue light. The Plant Cell, 2021, 33: 1813-1827 [56] Fang LZ, Ma ZY, Wang QB, et al. Plant growth and photosynthetic characteristics of soybean seedlings under different LED lighting quality conditions. Journal of Plant Growth Regulation, 2020, 40: 668-678 [57] 付传明, 黄宁珍, 赵志国, 等. 光质与补光对水稻幼苗生长及光合速率的影响. 广西植物, 2007, 27(2): 255-259 [58] Xu Y, Wang JY, Wang RQ, et al. The role of strigolactones in the regulation of root system architecture in grapevine (Vitis vinifera L.) in response to root-restriction cultivation. International Journal of Molecular Sciences, 2021, 22: 8799 [59] An ZF, Zhou CJ. Light induces lettuce seed germination through promoting nitric oxide production and phospholipase D-derived phosphatidic acid formation. South African Journal of Botany, 2017, 108: 416-422 [60] 陈玲, 张晓军, 王月福, 等. 红蓝组合光源对花生幼苗根系生长的影响. 花生学报, 2016, 45(1): 15-19 [61] Shen Q, Li X, Wang Z. Effects of red light on root growth and water uptake of maize seedlings. Journal of Integrative Plant Biology, 2021, 63: 843-851 [62] Rashidi A, Tehranifar A, Samiei L. Improving energy efficiency, germination indices and root system development in Cape periwinkle and marigold through spectral distribution and light exposure time. Environmental and Experimental Botany, 2021, 189: 104531 [63] 李韶山, 潘瑞炽. 蓝光对水稻幼苗生长效应的研究. 中国水稻科学, 1994, 8(2): 115-118 [64] Xie DJ, Tarin MWK, Chen LY, et al. Consequences of LED lights on root morphological traits and compounds accumulation in Sarcandra glabra seedlings. International Journal of Molecular Sciences, 2021, 22: 7179 [65] Warnasooriya SN, Montgomery BL. Spatial-specific regulation of root development by phytochromes in Arabidopsis thaliana. Plant Signaling and Behavior, 2011, 6: 2047-2050 [66] Salisbury FJ, Hall A, Grierson CS, et al. Phytochrome coordinates Arabidopsis shoot and root development. The Plant Journal, 2007, 50: 429-438 [67] Kircher S, Schopfer P. Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109: 11217-11221 [68] Wang T, Guo J, Peng YQ, et al. Light-induced mobile factors from shoots regulate rhizobium-triggered soybean root nodulation. Science, 2021, 374: 65-71 [69] Ren MF, Liu SZ, Mao GL, et al. Simultaneous application of red and blue light regulate carbon and nitrogen metabolism, induces antioxidant defense system and promote growth in rice seedlings under low light stress. International Journal of Molecular Sciences, 2023, 24: 10706 [70] Spaninks K, Lamers G, Lieshout JV, et al. Light quality regulates apical and primary radial growth of Arabidopsis thaliana and Solanum lycopersicum. Scientia Horticulturae, 2023, 317: 112082 [71] Nie WF, Li Y, Chen Y, et al. Spectral light quality re-gulates the morphogenesis, architecture, and flowering in pepper (Capsicum annuum L.). Journal of Photochemistry Photobiology B: Biology, 2023, 241: 112673 [72] Fukuda N, Ajima C, Yukawa T, et al. Antagonistic action of blue and red light on shoot elongation in petunia depends on gibberellin, but the effects on flowering are not generally linked to gibberellin. Environmental and Experimental Botany, 2016, 121: 102-111 [73] Mostafa E, Ghorbani MJ, Sasan A, et al. Alteration of flower yield and phytochemical compounds of saffron (Crocus sativus L.) by application of different light qua-lities and growth regulators. Horticulturae, 2023, 9: 169 [74] Guo H, Yang H, Mockler TC, et al. Regulation of flo-wering time by Arabidopsis photoreceptors. Science, 1998, 279: 1360-1363 [75] Li HM, Tang CM, Xu ZG, et al. Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). Journal of Agricultural Science, 2012, 4: 262-273 [76] Christie JM, Arvai AS, Baxter KJ, et al. Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science, 2012, 335: 1492-1496 [77] Valverde F, Mouradov A, Soppe W, et al. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science, 2004, 303: 1003-1006 [78] Zuo ZC, Liu HT, Liu B, et al. Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Current Biology, 2011, 21: 841-847 [79] Song YH, Smith RW, To BJ, et al. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science, 2012, 336: 1045-1049 [80] 闻婧. LED红蓝光波峰及R/B对密闭植物工厂作物的影响. 博士论文. 北京: 中国农业科学院, 2009 [81] 魏灵玲, 杨其长, 刘水丽, 等. LED在设施园艺中的应用系列.Ⅰ. LED在密闭式植物苗工厂中的应用. 农业工程技术, 2009(5): 13-14 [82] 陈晓丽, 郭文忠, 薛绪掌, 等. LED组合光谱对水培生菜矿物质吸收的影响. 光谱学与光谱分析, 2014, 34(5): 1394-1397 [83] 林火灿. 不照阳光不需土植物工厂育果蔬. 中国中小企业, 2018(8): 47-49 [84] 邵明杰, 刘文科, 周成波, 等. LED红蓝组合光谱下强光照射时长及频率对生菜生长及营养元素吸收的影响. 光谱学与光谱分析, 2021, 41(9): 2853-2858 [85] Ghosh S, Watson A, Gonzalez-Navarro OE, et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols, 2018, 13: 2944-2963 [86] Felix J, Hahn V, Tobias W, et al. Speed breeding short-day crops by LED-controlled light schemes. Theoretical and Applied Genetics, 2020, 133: 2335-2342 [87] Liu Y, Li ZG, Cheng H, et al. Plant factory speed breeding significantly shortens rice generation time and enhances metabolic diversity. Engineering, 2024, doi: https://doi.org/10.1016/j.eng.2024.09.019 [88] 黄涛, 张丽, 杨其长, 等. 叶用莴苣新品种‘中生1号’. 园艺学报, 2024, 51(增刊2): 85-86 [89] 林坤明, 刘文科, 刘家源, 等. LED红蓝光连续光照对辣椒苗生长和壮苗指数的影响. 照明工程学报, 2023, 34(5): 1-6 [90] 李艳伟, 杨新琴, 何润云, 等. 不同红蓝光组合LED灯对瓠瓜育苗的影响. 浙江农业科学, 2020, 61(11): 2262-2265 [91] Wen JH, Guang ZY, Dan DL, et al. Metabolomics and transcriptomics analysis of vitro growth in pitaya plantlets with different LED light spectra treatment. Industrial Crops and Products, 2022, 186: 115237 [92] 陈光彩, 潘彤彤, 毛琪, 等. LED红、蓝光源对香蕉组培苗生长的影响. 中国南方果树, 2019, 48(2): 59-66 [93] Jao CR, Fang W. Growth of potato plantlets in vitro is different when provided concurrent versus alternating blue and red light photoperiods. HortScience, 2004, 39: 380-382 [94] 郭双生, 艾为党, 赵成坚, 等. 受控生态生保系统中植物生长光源的选择. 航天医学与医学工程, 2003, 16(增刊1): 490-493 [95] 唐永康, 郭双生, 艾为党, 等. 不同比例红蓝LED光照对油麦菜生长发育的影响. 航天医学与医学工程, 2010, 23(3): 206-212 |
[1] | HAN Du-bin, CHEN Xiang-rong, ZHOU Fu-cai, CHEN Xue-hao, WU Xiao-xia, ZHAO Ming. Control effect of blue light on Bemisia tabaci [J]. Chinese Journal of Applied Ecology, 2021, 32(6): 2191-2198. |
[2] | JIANG Heng, ZOU Ding-hui, LOU Wen-yong. Effects of inorganic carbon supplies and light on photosynthetic functions of Pyropia haitanensis. [J]. Chinese Journal of Applied Ecology, 2018, 29(2): 515-521. |
[3] | ZHANG Ke-kun, LIU Feng-zhi , WANG Xiao-di, SHI Xiang-bin, WANG Bao-liang, ZHENG Xiao-cui, JI Xiao-hao, WANG Hai-bo. Effects of supplementary light with different wavelengths on fruit quality of ‘Ruidu Xiangyu’ grape under promoted cultivation [J]. Chinese Journal of Applied Ecology, 2017, 28(1): 115-126. |
[4] | ZHANG Min1,2,3, ZHU Jiao-jun1,2, YAN Qiao-ling1,2,3. Effects of light quality on the seed germination of main tree species in a secondary forest ecosystem of Northeast China. [J]. Chinese Journal of Applied Ecology, 2012, 23(10): 2625-2631. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||