[1] 宋红丽, 韩洪军, 郁万妮, 等. 黄河三角洲滨岸潮滩湿地碱蓬对水沙条件及氮输入的适应性. 应用生态学报, 2020, 31(4): 1333-1340 [2] Guan B, Zhang L, Li M, et al. The sediment burial depth and salinity control the early developments of Suaeda salsa in the Yellow River Delta. Nordic Journal of Botany, 2021, 39: e02956 [3] Seiwa K, Watanabe A, Saitoh T, et al. Effects of bur-ying depth and seed size on seedling establishment of Japanese chestnuts, Castanea crenata. Forest Ecology and Management, 2002, 164: 149-156 [4] Kent M, Owen NW, Dale MP. Photosynthetic responses of plant communities to sand burial on the Machair dune systems of the Outer Hebrides, Scotland. Annals of Botany, 2005, 95: 869-877 [5] 李旭, 于洁, 李峰, 等. 不同水位和竞争模式对典型湿地植物生态化学计量特征的影响. 湖泊科学, 2019, 31(6): 1651-1661 [6] 唐毅, 蒋德明, 陈卓, 等. 地上竞争与地下竞争对科尔沁沙地榆树幼苗生长的影响. 应用生态学报, 2011, 22(8): 1955-1960 [7] Wilson SD, Tilman D. Competitive responses of eight old-field plant species in four environments. Ecology, 1995, 76: 1169-1180 [8] Cahill JF. Fertilization effects on interactions between above-and belowground competition in an old field. Ecology, 1999, 80: 466-480 [9] 金晓明, 于良斌, 张颖琪, 等. 群落演替对呼伦贝尔草地两种优势植物繁殖分配及生态化学计量的影响. 应用生态学报, 2020, 31(3): 787-793 [10] 张慧东, 毛沂新, 王睿照, 等. 辽东山区次生蒙古栎成熟林空间结构及个体竞争特征. 应用生态学报, 2024, 35(9): 2492-2500 [11] 魏庐潞, 徐婷婷, 马周娟, 等. 同质园环境下不同种源鬼箭锦鸡儿根叶功能性状差异. 应用生态学报, 2024, 35(11): 3005-3014 [12] Strzemski M, Dresler S. Impact of biotic/abiotic stress factors on plant specialized metabolites. International Journal of Molecular Sciences, 2024, 25: 5742 [13] 张睿, 刘华民, 寇欣, 等. 内蒙古高原湖滨湿地优势植物功能性状特征及其适应性. 生态学报, 2022, 42(19): 7773-7784 [14] 李欣阳, 张娟娟, 周建云, 等. 宁南山区人工混交林叶片-凋落物-细根生态化学计量特征. 应用生态学报, 2023, 34(11): 2889-2897 [15] 徐睿, 刘静, 王利艳, 等. 不同地理种源杉木根叶功能性状与碳氮磷化学计量分析. 生态学报, 2022, 42(15): 6298-6310 [16] Han MX, Zhang HY, Liu MC, et al. Increased depen-dence on nitrogen-fixation of a native legume in competition with an invasive plant. Plant Diversity, 2024, 46: 510-518 [17] Thorsted MD, Weiner J, Olesen JE. Above-and below-ground competition between intercropped winter wheat Triticum aestivum and white clover Trifolium repens. Journal of Applied Ecology, 2006, 43: 237-245 [18] Kunstler G, Lavergne S, Courbaud B, et al. Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: Implications for forest community assembly. Ecology Letters, 2012, 15: 831-840 [19] 李旭, 李峰, 谢永宏, 等. 洞庭湖荻-苔草群落交错带植被动态及影响因子: 以北洲子洲滩为例. 湖泊科学, 2015, 27(6): 1020-1026 [20] Fan BL, Zhao CM, Zhang XW, et al. Impacts of sand burial and wind erosion on regeneration and growth of a desert clonal shrub. Frontiers in Plant Science, 2018, 9: 1696 [21] Pan Y, Xie YH, Chen XS, et al. Effects of flooding and sedimentation on the growth and physiology of two emergent macrophytes from Dongting Lake wetlands. Aquatic Botany, 2012, 100: 35-40 [22] Grace JB, 刘庆. 关于植物竞争强度CI测定方法的评述. 生态学杂志, 1996, 15(5): 76-79 [23] 丁佳, 吴茜, 闫慧, 等. 地形和土壤特性对亚热带常绿阔叶林内植物功能性状的影响. 生物多样性, 2011, 19(2): 158-167 [24] Chen HJ, Qualls RG, Blank RR. Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. Aqua-tic Botany, 2005, 82: 250-268 [25] 潘柏含, 邹雅, 邓正苗, 等. 洞庭湖湿地短尖薹草(Carex brevicuspis)种群克隆生长对泥沙淤积的适应. 湖泊科学, 2024, 36(5): 1470-1479 [26] Pan Y, Xie YH, Deng ZM, et al. High water level impedes the adaptation of Polygonum hydropiper to deep burial: Responses of biomass allocation and root morpho-logy. Scientific Reports, 2014, 4: 5612 [27] 俞幸池, 苏琴琴, 谢姣姣, 等. 三峡水库消落带泥沙沉积强度影响因素的分析研究. 长江流域资源与环境, 2021, 30(11): 2746-2754 [28] Zhang JH, Maun MA. Effects of sand burial on seed germination, seedling emergence, survival, and growth of Agropyron psammophilum. Canadian Journal of Botany, 1990, 68: 304-310 [29] 赵哈林, 曲浩, 周瑞莲, 等. 沙埋对两种沙生植物幼苗生长的影响及其生理响应差异. 植物生态报, 2013, 37(9): 830-838 [30] Zhang GF, Zhao WZ. Species-specific traits determine shrub-annual interactions during a growing season. Journal of Arid Land, 2014, 7: 403-413 [31] Li F, Xie YH, Zhu LL, et al. Changed clonal growth form induced by sand burial facilitates the acclimation of Carex brevicuspis to competition. PLoS One, 2015, 10(3): e0121270 [32] Cheng C, Liu ZK, Song W, et al. Biodiversity increases resistance of grasslands against plant invasions under multiple environmental changes. Nature Communications, 2024, 15: 4506 [33] 闫媛媛, 郭琪, 管俊泽, 等. 红松和水曲柳叶生态化学计量及养分重吸收特征的地理变异. 应用生态学报, 2023, 34(4): 977-984 [34] Groleau-Renaud V, Plantureux S, Guckert A. Influence of plant morphology on root exudation of maize subjected to mechanical impedance in hydroponic conditions. Plant and Soil, 1998, 201: 231-239 [35] Ye XH, Liu ZL, Zhang SD, et al. Experimental sand burial and precipitation enhancement alter plant and soil carbon allocation in a semi-arid steppe in north China. Science of the Total Environment, 2019, 651: 3099-3106 [36] 宋红丽, 刘前进, 安娟, 等. 水沙条件及氮输入对黄河口滨岸潮滩湿地碱蓬和土壤15N吸收特征的影响. 生态学报, 2021, 41(21): 8507-8515 [37] 任静, 刘小勇, 韩富军, 等. 供氮水平与地面覆沙对苹果幼树15N-尿素吸收分配及利用的影响. 农业工程学报, 2020, 36(4): 135-142 [38] Wang MY, Yang J, Gao HL, et al. Interspecific plant competition increases soil labile organic carbon and nitrogen contents. Forest Ecology and Management, 2020, 462: 117991 [39] Broadbent A, Stevens CJ, Peltzer DA, et al. Belowground competition drives invasive plant impact on native species regardless of nitrogen availability. Oecologia, 2017, 186: 577-587 [40] Christian N, Bever JD. Carbon allocation and competition maintain variation in plant root mutualisms. Ecology and Evolution, 2018, 8: 5792-5800 [41] Craine JM, Dybzinski R. Mechanisms of plant competition for nutrients, water and light. Functional Ecology, 2013, 27: 833-840 |