[1] 杜浩, 刘学敏, 周劲松, 等. 马唐的综合防控研究进展. 安徽农业科学, 2022, 50(8): 26-28 [2] 郭文磊, 于超杰, 田兴山. 马唐密度对旱直播稻生长和产量性状的影响及其防治经济阈值. 西北农林科技大学学报: 自然科学版, 2023, 51(5): 101-109 [3] 戴魏真, 陆灯清, 许锦程, 等. 直播稻田马唐对噁唑酰草胺的抗性机制研究. 东北农业大学学报, 2023, 54(10): 1-10 [4] 郭文磊, 张泰劼. 张纯, 等. 马唐种子萌发及幼苗建成对不同环境因子的响应. 植物保护, 2022, 8(2): 85-93 [5] Yang Q, Zhu JL, Yang X, et al. Ile-1781-Leu target mutation and non-target-site mechanism confer resistance to acetyl-CoA carboxylase-inhibiting herbicides in Digitaria ciliaris var. chrysoblephara. Journal of Agricultural and Food Chemistry, 2023, 71: 7988-7995 [6] Kaundun SS. Resistance to acetyl-CoA carboxylase-inhibiting herbicides. Pest Management Science, 2014, 70: 1405-1417 [7] Heap I. The international survey of herbicide resistant weeds[EB/OL].[2025-11-28]. https://www.weedscience.org [8] 蒋易凡, 陈国奇, 董立尧. 稻田马唐对稻田常用茎叶处理除草剂的抗性水平研究. 杂草学报, 2017, 35(2): 67-72 [9] 谷承文, 张立磊, 范玉洁, 等. 安徽稻区马唐对噁唑酰草胺的抗性测定及防治药剂筛选. 安徽科技学院学报, 2023, 37(4): 42-47 [10] Yang Q, Deng W, Liu LW, et al. Resistance patterns and molecular basis to ACCase-inhibiting herbicides. Weed Science, 2024, 72: 352-359 [11] Powles SB, Yu Q. Evolution in action: Plants resistant to herbicides. Annual Review of Plant Biology, 2010, 61: 317-347 [12] Gaines TA, Duke SO, Morran S, et al. Mechanisms of evolved herbicide resistance. Journal of Biological Che-mistry, 2020, 295: 10307-10330 [13] Zhang Y, Chen LP, Song W, et al. Diverse mechanisms associated with cyhalofop-butyl resistance in Chinese sprangletop (Leptochloa chinensis (L.) Nees): Characterization of target-site mutations and metabolic resis-tance-related genes in two resistant populations. Frontiers in Plant Science, 2022, 13: 990085 [14] Deng W, Li Y, Yao S, et al. Current status of cyhalofop-butyl and metamifop resistance and diversity of the ACCase gene mutations in Chinese sprangletop (Leptochloa chinensis) from China. Pesticide Biochemistry and Physiology, 2023, 197: 105648 [15] Deng W, Li Y, Yao S, et al. ACCase gene mutations and P450-mediated metabolism contribute to cyhalofop-butyl resistance in Eleusine indica biotypes from direct-seeding paddy fields. Pesticide Biochemistry and Physio-logy, 2023, 194: 105530 [16] Basak S, McElroy JS, Brown AM, et al. Plastidic ACCase Ile-1781-Leu is present in pinoxaden-resistant southern crabgrass (Digitaria ciliaris). Weed Science, 2020, 68: 41-50 [17] Iwakami S, Kamidate Y, Yamaguchi T, et al. CYP81A P450s are involved in concomitant cross-resistance to acetolactate synthase and acetyl-CoA carboxylase herbicides in Echinochloa phyllopogon. New Phytologist, 2019, 221: 2112-2122 [18] Cummins I, Wortley DJ, Sabbadin F, et al. Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 5812-5817 [19] Deng W, Yang MT, Li Y, et al. Enhanced metabolism confers a high level of cyhalofop-butyl resistance in a Chinese sprangletop (Leptochloa chinensis (L.) Nees) population. Pest Management Science, 2021, 77: 2576-2583 [20] Han HP, Yu Q, Beffa R, et al. Cytochrome P450 CYP81A10v7 in Lolium rigidum confers metabolic resistance to herbicides across at least five modes of action. Plant Journal, 2021, 105: 79-92 [21] Chen W, Bai DY, Liao YX, et al. PfGSTF2 endows resistance to quizalofop-p-ethyl in Polypogon fugax by GSH conjugation. Plant Biotechnology Journal, 2025, 23: 216-231 [22] Moss SR, Clarke JH, Blair AM, et al. The occurrence of herbicide-resistant grass-weeds in the United Kingdom and a new system for designating resistance in screening assays. Crop Protection Conference on Weeds, Brighton, UK, 1999: 179-184 [23] 邓维. 抗苯磺隆播娘蒿抗性机理及抗性突变对乙酰乳酸合成酶功能影响. 博士论文. 北京: 中国农业大学, 2017 [24] Bagavathiannan MV, Norsworthy JK, Smith KL, et al. Modeling the simultaneous evolution of resistance to ALS-and ACCase-inhibiting herbicides in barnyardgrass (Echinochloa crus-galli) in Clearfield© Rice. Weed Technology, 2014, 28: 89-103 [25] 王红春, 徐蓬, 孙钰晨, 等. 江苏省稻田杂草的发生现状与防控建议. 杂草学报, 2019, 37(4): 1-5 [26] 袁国徽, 田志慧, 高原, 等. 上海市水稻田千金子对3种乙酰辅酶A羧化酶抑制剂的抗性现状及酶突变机制. 农药学学报, 2022, 24(3): 492-500 [27] Délye C, Jasieniuk M, Le Corre V. Deciphering the evolution of herbicide resistance in weeds. Trends in Gene-tics, 2013, 29: 649-658 [28] Cao JJ, Tao Y, Zhang ZC, et al. Mechanism of metamifop resistance in Digitaria ciliaris var. chrysoblephara from Jiangsu, China. Frontiers in Plant Science, 2023, 14: 1133798 [29] Délye C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Management Science, 2013, 69: 176-187 [30] Liu XY, Hou ZL, Zhang YY, et al. Cloning and functional characterization of a tau class glutathione transferase associated with haloxyfop-P-methyl resistance in Digitaria sanguinalis. Pest Management Science, 2023, 79: 3950-3958 [31] 李淑顺, 强胜, 焦骏森. 轻型栽培技术对稻田潜杂草群落多样性的影响. 应用生态学报, 2009, 20(10): 2437-2445 [32] 张丹, 闵庆文, 成升魁, 等. 不同稻作方式对稻田杂草群落的影响. 应用生态学报, 2010, 21(6): 1603-1608 [33] 戴晓琴, 欧阳竹, 李运生. 耕作措施和施肥方式对麦田杂草密度和生物量的影响. 生态学杂志, 2011, 30(2): 234-240 |