Chinese Journal of Applied Ecology ›› 2025, Vol. 36 ›› Issue (7): 2192-2200.doi: 10.13287/j.1001-9332.202507.031
• Original Articles • Previous Articles Next Articles
ZHANG Ye1,2, WANG Shaojun1,2*, YIN Ming1,2, HAO Xin3, LU Chan3, YAN Yinglin1,2, GUO Xiaofei3
Received:
2024-12-16
Accepted:
2025-04-05
Online:
2025-07-18
Published:
2026-01-18
ZHANG Ye, WANG Shaojun, YIN Ming, HAO Xin, LU Chan, YAN Yinglin, GUO Xiaofei. Impact of ant nesting on soil methane oxidation dynamics in a tropical secondary forest of Syzygium oblatum[J]. Chinese Journal of Applied Ecology, 2025, 36(7): 2192-2200.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202507.031
[1] IPCC. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2001 [2] 谢先芝, 刘奇华, 李新华, 等. 稻田甲烷产生与排放的影响因素及减排措施研究进展. 中国水稻科学, 2024, 38(5): 475-494 [3] 王郑钧, 王邵军, 肖博, 等. 蚂蚁筑巢对热带橡胶人工林土壤甲烷排放季节动态的影响. 应用生态学报, 2024, 35(6): 1695-1704 [4] Hansen JE, Lacis A. Sun and dust versus greenhouse gases: An assessment of their relative roles in global climate change. Nature, 1990, 346: 713-719 [5] Christiansen JR, Levy-Booth D, Prescott CE, et al. Microbial and environmental controls of methane fluxes along a soil moisture gradient in a Pacific coastal temperate rainforest. Ecosystems, 2016, 19: 1255-1270 [6] Styrsky JD, Eubanks MD. Ecological consequences of interactions between ants and honeydew-producing insects. Proceedings of the Royal Society B: Biological Sciences, 2007, 274: 151-164 [7] Chiri E, Greening C. Termite mounds contain soil derived methanotroph communities kinetically adapted to elevated methane concentrations. The ISME Journal, 2020: 14: 2715-2731 [8] 康玉娟. 增温下蚯蚓影响沼泽土壤温室气体排放的微生物机制. 硕士论文. 长春: 中国科学院东北地理与农业生态研究所, 2022 [9] Cammeraat LH, Risch AC. The impact of mineral soil ants on soil properties and processes at different scales. Journal of Applied Entomology, 2008, 132: 285-294 [10] Wang SJ, Li JH, Zhang Z, et al. The contributions of underground-nesting ants to CO2 emission from tropical forest soils vary with species. Science of the Total Environment, 2018, 630: 1095-1102 [11] Schumacher E. The Impact of Ants on the Aboveground and Belowground Ecological Network: Field Studies in a Grassland and Experiments with Microcosms. PhD Thesis. Göttingen: Faculty of Mathematics and Natural Sciences, Georg-August-University Göttingen, 2010 [12] Maurer D, Kolb S, Haumaier L, et al. Inhibition of atmospheric methane oxidation by monoterpenes in Norway spruce and European beech soils. Soil Biology and Biochemistry, 2008, 40: 3014-3020 [13] Jílková V, Tomáš P, Martina S, et al. Methane and carbon dioxide flux in the profile of wood ant (Formica aquilonia) nests and the surrounding forest floor during a laboratory incubation. FEMS Microbiology Ecology, 2016, 92: fiw141 [14] 曹乾斌, 王邵军, 任玉连, 等. 蚂蚁筑巢对西双版纳热带森林土壤碳矿化动态的影响. 应用生态学报, 2019, 30(12): 4231-4239 [15] Xu ZH, Hu G. Study on ant community biomass and ecological function in tropical rainforest of Xishuangbanna. Zoological Research, 1999, 20: 441-445 [16] 孙向阳. 北京低山区森林土壤中CH4排放通量的研究. 土壤与环境, 2000, 9(3): 173-176 [17] 魏晋, 徐星凯, 黄耀, 等. 不同区域森林土壤甲烷氧化和乙烯氧化特性及影响机制. 农业环境科学学报, 2008, 27(1): 273-278 [18] 张旭, 牛艳萍. 油浴加热法测定土壤样品中有机碳. 黑龙江科技信息, 2014(10): 77-79 [19] 陈果, 刘岳燕, 姚槐应, 等. 一种测定淹水土壤中微生物生物碳的方法: 液氯熏蒸浸提-水浴法. 土壤学报, 2006, 43(6): 981-988 [20] 赵爽, 王邵军, 杨波, 等. 接种丛枝菌根真菌对云南石漠化土壤呼吸的影响. 生态学报, 2022, 42(21): 8830-8838 [21] 赵林林, 吴志祥, 孙瑞, 等. 土壤有机碳分类与测定方法的研究概述. 热带农业工程, 2021, 45(3): 154-161 [22] 尹献远, 徐霄, 余丽丽, 等. 全自动凯氏定氮仪测定土壤碱解氮的探讨. 浙江农业科学, 2012(8): 1185-1187 [23] 王晋, 庄舜尧, 朱兆良. 不同种植年限水田与旱地土壤有机氮组分变化. 土壤学报, 2014, 14(2): 286-294 [24] 孙福来, 张延霞, 庞祥锋, 等. 长期定位施肥对土壤有机质和碱解氮及冬小麦产量的影响. 土壤通报, 2007, 38(5): 1016-1018 [25] 李洪杰, 刘军伟, 杨林, 等.海拔梯度模拟气候变暖对高山森林土壤微生物生物量碳氮磷的影响. 应用与环境生物学报, 2016, 22(4): 599-605 [26] 邓湘琴, 杨晶晶, 陈槐, 等. 森林土壤氧化(吸收)甲烷研究进展. 生态环境学报, 2012, 21(3): 577-583 [27] Wang SJ, Wang H, Li JH, et al. Ants can exert a diverse effect on soil carbon and nitrogen pools in a Xishuangbanna tropical forest. Soil Biology and Biochemistry, 2017, 113: 45-52 [28] 曹润, 王邵军, 陈闽昆, 等. 西双版纳热带森林不同恢复阶段土壤微生物生物量碳的变化. 生态环境学报, 2019, 28(10): 1982-1990 [29] 李少辉, 王邵军, 张哲, 等. 蚂蚁筑巢对西双版纳热带森林土壤易氧化有机碳时空动态的影响. 应用生态学报, 2019, 30(2): 413-419 [30] 罗达, 史作民, 王卫霞, 等. 南亚热带格木、马尾松幼龄人工纯林及其混交林生态系统碳氮储量. 生态学报, 2015, 35(18): 6051-6059. [31] Cammeraat LH, Willott SJ, Compton SG, et al. The effects of ants’ nests on the physical, chemical and hydrological properties of a rangeland soil in semi-arid Spain. Geoderma, 2002, 105: 1-20 [32] 解玲玲, 王邵军, 肖博, 等. 土壤碳库积累与分配对热带森林恢复的响应. 生态学报, 2023, 43(23): 9877-9890 [33] Boots B, Keith AM, Niechoj R, et al. Unique soil microbial assemblages associated with grassland ant species with different nesting and foraging strategies. Pedobiologia, 2012, 55: 33-40 [34] 黄晨琳. 面向力敏传感的导电弹性体复合材料的结构化设计、性能研究及有限元分析. 硕士论文. 北京: 北京化工大学, 2024 [35] MacMahon JA, Mull JF, Crist TO. Harvester ants (Pogonomyrmex spp.): Their community and ecosystem influences. Annual Review of Ecology and Systematics, 2000, 31: 265-291 [36] 吴霞, 王晓丽, 乌音嘎, 等. 黄河内蒙古段甲烷通量变化特征及甲烷功能菌群落对通量的影响. 生态学报, 2024, 44(16): 7106-7118 [37] 刘攀, 陆梅, 吕晶花, 等. 蚂蚁筑巢对纳帕海面山土壤碳积累及分配的影响. 北京林业大学学报, 2024, 46(5): 114-125 [38] Bastida F, Torres I, Hernández T, et al. Can the labile carbon contribute to carbon immobilization in semiarid soils? Priming effects and microbial community dyna-mics. Soil Biology and Biochemistry, 2013, 57: 892-902 [39] Geng J, Cheng SL, Fang HJ, et al. Soil nitrate accumulation explains the nonlinear responses of soil CO2 and CH4 fluxes to nitrogen addition in a temperate needle-broadleaved mixed forest. Ecological Indicators, 2017, 79: 28-36 [40] Xu JB, Jia ZJ, Lin XG, et al. DNA-based stable isotope probing identifies formate-metabolizing methanogenic archaea in paddy soil. Microbiological Research, 2017, 202: 36-42 [41] 张雪慧, 张仲胜, 武海涛. 蚂蚁扰动对土壤有机碳循环过程的影响研究进展. 应用生态学报, 2020, 31(12): 4301-4311 [42] 万冬梅, 陈匆琼, 杨智杰, 等. 模拟降水减少对亚热带杉木人工林不同深度土壤CH4吸收能力的影响. 林业科学研究, 2025, 38(1): 86-94 [43] Bardgett RD, Hobbs PJ, Frostegard A. Changes in soil fungal: bacterial biomass ratios following reductions in nitrogen deposition. Soil Biology and Biochemistry, 1996, 28: 811-818 [44] Conrad R, Rothfuss F. Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biology and Fertility of Soils, 1991, 12: 28-32 [45] 王汝南. 模拟大气氮沉降对温带森林土壤温室气体交换通量的影响. 硕士论文. 北京: 北京林业大学, 2012 [46] 车昭碧, 徐鹏飞, 郭亚亚, 等. 不同草地类型的北方蚁巢及周围土壤理化性质特征分析. 草地学报, 2021, 29(5): 982-990 [47] 崔莹莹, 何露露, 肖好燕, 等. 中亚热带人工幼林土壤甲烷通量月动态及影响因素. 亚热带资源与环境学报, 2023, 18(2): 41-49 [48] Vinolas LC, Vallejo VR, Jones DL. Control of amino acid mineralization and microbial metabolism by tempe-rature. Soil Biology and Biochemistry, 2001, 33: 1137-1140 [49] Smith KA, Dobbie KE, Ball BC, et al. Oxidation of atmospheric methane in northern European soils, comparison with other ecosystems, and uncertainties in the glo-bal terrestrial sink. Global Change Biology, 2000, 6: 791-803 [50] Brumme R, Borken W. Site variation in methane oxidation as affected by atmospheric deposition and type of temperate forest ecosystem. Journal of Geophysical Research, 1999, 104: 8161-8171 [51] 郑聚锋, 张平究, 潘根兴, 等. 长期不同施肥下水稻土甲烷氧化能力及甲烷氧化菌多样性的变化. 生态学报, 2008, 28(10): 4864-4872 [52] Zhao J, Cai YF, Jia ZJ. The pH-based ecological cohe-rence of active canonical methanotrophs in paddy soils. Biogeosciences, 2020, 17: 1451-1462 [53] Dunfield PF, Yuryev A, Sen A, et al. Methane oxidation by type Ⅰ and type Ⅱ methanotrophs: A comparative study of their growth and methane utilization. Environmental Microbiology, 2007, 9: 1235-1247 [54] Cammeraat LH, Risch AC. The impact of mineral soil ants on soil properties and processes at different scales. Journal of Applied Entomology, 2008, 132: 285-294 [55] Jílková V, Tomáš P, Martina S, et al. Seasonal changes in methane and carbon dioxide flux in wood ant (Formica aquilonia) nests and the surrounding forest soil. Pedobiologia, 2015, 58: 7-12 [56] Boulton AM, Amberman KD. How ant nests increase soil biota richness and abundance: A field experiment. Arthropod Diversity and Conservation, 2006, 15: 69-82 |
[1] | TIAN Maohui, SHEN Lidong, SU Weici. Research progress on the effects of elevated atmospheric CO2 concentration on CH4 emission and related microbial processes in paddy fields [J]. Chinese Journal of Applied Ecology, 2024, 35(8): 2267-2281. |
[2] | WANG Zhengjun, WANG Shaojun, XIAO Bo, XIE Lingling, GUO Zhipeng, GUO Xiaofei, LI Rui, LUO Shuang, XIA Jiahui, YANG Shengqiu, LAN Mengjie. Effects of ant nesting on seasonal dynamics of soil CH4 emissions in a tropical rubber-plantation forest [J]. Chinese Journal of Applied Ecology, 2024, 35(6): 1695-1704. |
[3] | XIE Lingling, WANG Shaojun, XIAO Bo, WANG Zhengjun, GUO Zhipeng, GUO Xiaofei, LUO shuang, LI Rui, XIA Jiahui, LAN Mengjie, YANG Shengqiu. Effects of ant nests on soil CH4 emissions from Syzygium oblatum communities of a secondary tropical forest [J]. Chinese Journal of Applied Ecology, 2024, 35(3): 678-686. |
[4] | LI Jiayu, SHI Xiuzhen, LI Shuaijun, WANG Zhenyu, WANG Jianqing, ZOU Bingzhang, WANG Sirong, HUANG Zhiqun. Effects of stand ages on soil enzyme activities in Chinese fir plantations and natural secondary forests [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 339-346. |
[5] | SONG Jiayu, CHEN Xiang-biao, CHEN Shidong, XIONG Decheng, YANG Zhijie. The effects of Typhoon Doksuri on soil respiration in a subtropical forest [J]. Chinese Journal of Applied Ecology, 2024, 35(12): 3386-3392. |
[6] | JI Yongkang, MA Nan, ZHANG Hui, LI Cuihuan, MA Yuandan, WU Qiqian, LI Yan. Effect of seasonal distribution in precipitation on soil nitrogen mineralization in a subtropical forest [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 186-194. |
[7] | WU Xinyang, SHAO Jing, CHEN Xiaoping, LI Jinlong, HU Dandan, ZHONG Quanlin, CHENG Dongliang. Nutrient content and resorption efficiency of leaves of broad-leaved trees along altitudes in Wuyi Mountains, China [J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2305-2313. |
[8] | LI Aogui, CAI Shifeng, LUO Suzhen, WANG Xiaohong, CAO Lirong, WANG Xue, LIN Chengfang, CHEN Guangshui. C, N, and P stoichiometry for leaf litter of 62 woody species in a subtropical evergreen broadleaved forest [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1153-1160. |
[9] | ZHANG Kunfeng, WANG Shaojun, WANG Ping, ZHANG Lulu, FAN Yuxiang, XIE Lingling, XIAO Bo, WANG Zhengjun, GUO Zhipeng. Effects of ant nesting on seasonal dynamics of soil N2O emission in a secondary tropical forest [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1218-1224. |
[10] | ZHANG Yuhui, CHEN Juan, XU Chao, XIONG Decheng, YANG Zhijie, CHEN Shidong, MAO Chao. Effects of warming on quantity and structure of litter-derived dissolved organic matter in subtropical natural Castanopsis kawakamii forests [J]. Chinese Journal of Applied Ecology, 2023, 34(4): 946-954. |
[11] | MAO Chao, LIN Weisheng, XU Chao, LIU Xiaofei, XIONG Decheng, YANG Zhijie, CHEN Shidong. Soil warming decreased dissolved organic carbon quantity and quality in subtropical forests. [J]. Chinese Journal of Applied Ecology, 2023, 34(3): 623-630. |
[12] | LIU Yanji, LIU Zikai, JIN Shengsheng, DENG Huiyu, SHEN Jupei, HE Jizheng. Response of gene abundance of ammonia-oxidizing microorganisms and denitrifying microorganisms to nitrogen and phosphorus addition in subtropical forest. [J]. Chinese Journal of Applied Ecology, 2023, 34(3): 639-646. |
[13] | LIN Sinuo, SU Yangui, LYU Kun, WU Guopeng, HUANG Zhengyi, WANG Jingjing, HUANG Gang. Altitudinal pattern and driving factors of soil fungal community in the tropical forest of Jianfengling, Hai-nan, China [J]. Chinese Journal of Applied Ecology, 2023, 34(2): 349-358. |
[14] | FENG Meng-meng, LIN Yong-xin, HE Zi-yang, LIU Xiao-fei, CHEN Shi-dong, WAN Song, DUAN Chun-jian, YE Gui-ping, HE Ji-zheng. Responses of soil ammonia-oxidizing microorganisms to simulated nitrogen deposition in a natural Castanopsis carlesii forest [J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1622-1628. |
[15] | XIA Yun, SHI Jia-qi, XIAO Hua-cui, WANG Quan-cheng, YANG Liu-ming, FAN Yue-xin. Optimization for the determination of phenol oxidase activity in subtropical forest soils developed on sandstone [J]. Chinese Journal of Applied Ecology, 2022, 33(5): 1223-1232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||