Chinese Journal of Applied Ecology ›› 2025, Vol. 36 ›› Issue (7): 2201-2212.doi: 10.13287/j.1001-9332.202507.033
• Original Articles • Previous Articles Next Articles
SUN Xiyan1, QI Ruotong1, LI Hongxu1, ZHENG Lanxiang1,2*
Received:
2025-01-13
Accepted:
2025-05-04
Online:
2025-07-18
Published:
2026-01-18
SUN Xiyan, QI Ruotong, LI Hongxu, ZHENG Lanxiang. Soil ammonia oxidation process and its driving factors in the riparian zone of drainage ditch in saline-alkali area of Ningxia, Northwest China[J]. Chinese Journal of Applied Ecology, 2025, 36(7): 2201-2212.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202507.033
[1] Lyu CJ, Li XJ, Yuan P, et al. Nitrogen retention effect of riparian zones in agricultural areas: A meta-analysis. Journal of Cleaner Production, 2021, 315: 128143 [2] Gilles P, Susana B, Abbott BW, et al. Riparian corridors: A new conceptual framework for assessing nitrogen buffering across biomes. Frontiers in Environmental Science, 2018, 6: 00047 [3] 李明月, 甄毓, 李思琦, 等. 渤海和南黄海沉积物中氨氧化微生物对硝化潜势的相对贡献. 海洋学报, 2023, 45(1): 89-101 [4] 王大玲, 杨雨虹, 贺惠, 等. 东海表层沉积物中氨氧化微生物对硝化潜势和N2O生成的贡献[EB/OL]. (2024-06-20)[2025-01-12]. 中国环境科学. https://link.cnki.net/urlid/11.2201.X.20240619.1637.013 [5] 刘建国, 刘卫国. 微生物介导的氮循环过程研究进展. 草地学报, 2018, 26(2): 277-283 [6] 魏振康, 王雪, 伍玉鹏, 等. 橘园绿肥种植对土壤氨氧化微生物的影响. 农业环境科学学报, 2024, 43(1): 122-132 [7] 刘爽, 姚佳妮, 张钧杰, 等. 荒漠豆科灌丛根际土壤氨氧化和反硝化微生物功能基因丰度及群落多样性特征. 草业学报, 2024, 33(5): 115-127 [8] He H, Zhen Y, Mi TZ, et al. Ammonia-oxidizing archaea and bacteria differentially contribute to ammonia oxidation in sediments from adjacent waters of Rushan Bay, China. Frontiers in Microbiology, 2018, 9: 116 [9] Caffrey JM, Bano N, Kalanetra K, et al. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia. ISME Journal, 2007, 1: 660-662 [10] Duff AM, Zhang ML, Smith CJ. Small-scale variation of ammonia oxidisers within intertidal sediments dominated by ammonia-oxidising bacteria Nitrosomonas sp. amoA genes and transcripts. Scientific Reports, 2017, 7: 13200 [11] Zhou XH, Li YM, Zhang JP, et al. Diversity, abundance and community structure of ammonia-oxidizing archaea and bacteria in riparian sediment of Zhenjiang ancient canal. Ecological Engineering, 2016, 90: 447-458 [12] 周磊榴, 祝贵兵, 王衫允, 等. 洞庭湖岸边带沉积物氨氧化古菌的丰度、多样性及对氨氧化的贡献. 环境科学学报, 2013, 33(6): 1741-1747 [13] 于少兰, 乔延路, 韩彦琼, 等. 好氧氨氧化微生物系统发育及生理生态学差异. 微生物学通报, 2015, 42(12): 2457-2465 [14] Prosser JI, Nicol GW. Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation. Trends in Microbiology, 2012, 20: 523-531 [15] 刘晶静, 马文丹, 和松, 等. 酸性土壤氨氧化微生物及其影响因素研究进展. 微生物学通报, 2023, 50(1): 413-426 [16] Liu Q, Wu YX, Ma J, et al. How does biochar influence soil nitrification and nitrification-induced N2O emissions? Science of the Total Environment, 2024, 908: 168530 [17] 贺惠, 甄毓, 米铁柱, 等. 乳山湾邻近海域沉积物中好氧氨氧化微生物分布特征. 环境科学, 2015, 36(11): 4068-4073 [18] 郭晓雯, 杨茂琪, 叶扬, 等. 新疆棉田灰漠土氨氧化微生物群落对灌溉水盐度和施氮量的响应. 干旱地区农业研究, 2024, 42(2): 231-244 [19] 罗晴, 甄毓, 彭宗波, 等. 三亚河红树林表层沉积物中好氧氨氧化微生物的分布特征及潜在硝化速率. 环境科学, 2020, 41(8): 3787-3796 [20] Wang XY, Wang C, Bao LL, et al. Abundance and community structure of ammonia-oxidizing microorga-nisms in reservoir sediment and adjacent soils. Applied Microbiology and Biotechnology, 2014, 98: 1883-1892 [21] Wang XM, Wang SY, Shi GS, et al. Factors driving the distribution and role of AOA and AOB in Phragmites communis rhizosphere in riparian zone. Journal of Basic Microbiology, 2019, 59: 425-436 [22] Zheng YL, Hou LJ, Newell S, et al. Community dyna-mics and activity of ammonia-oxidizing Prokaryotes in intertidal sediments of the Yangtze Estuary. Applied and Environmental Microbiology, 2014, 80: 408-419 [23] Tan QY, Wu HM, Zheng L, et al. Urban and agricultural land use led to niche differentiation of AOA, AOB and comammox along the Beiyun River continuum. Water Research, 2024, 255: 121480 [24] Deng DL, He G, Yang ZJ, et al. Activity and community structure of nitrifiers and denitrifiers in nitrogen-polluted rivers along a latitudinal gradient. Water Research, 2024, 254: 121317 [25] Meng YY, He ZB, Liu B, et al. Soil salinity and moisture control the processes of soil nitrification and denitrification in a riparian wetlands in an extremely arid regions in Northwestern China. Water, 2020, 12: 2815 [26] 肖满义, 王衫允, 李祎飞, 等. 季节性河流好氧氨氧化微生物的时空分布及网络互作研究: 以漕河为例. 环境科学学报, 2023, 43(12): 238-249 [27] 赵彬洁, 王旭, 张健, 等. 汉江流域金水河与淇河潜在硝化速率及硝化功能基因的影响因子. 环境科学, 2020, 41(12): 5419-5427 [28] Chang YK, Fan JF, Su J, et al. Spatial abundance, diversity, and activity of ammonia-oxidizing bacteria in coastal sediments of the Liaohe Estuary. Current Microbiology, 2017, 74: 632-640 [29] 田浩天, 方晶莹, 闵炜芳, 等. 宁夏盐碱地水稻根系形态和生理指标与产量的相关分析及综合评价. 南方农业学报, 2024, 55(6): 1619-1627 [30] 杨桂钦. 宁夏第三排水沟氮素时空分布及影响因素研究. 硕士论文. 银川: 宁夏大学, 2022 [31] 李冬瑞, 李广成, 马广福. 贺兰县盐碱地农艺改良措施. 宁夏农林科技, 2021, 62(1): 34-36 [32] Francis CA, Roberts KJ, Beman JM, et al. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 14683-14688 [33] Mao Y, Yannarell CA, Mackie IR. Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops. PLoS One, 2011, 6: e024750 [34] 寇涌苹, 张晓瑛, 赵文强, 等. 青藏高原农田土壤氨氧化古菌和细菌数量与活性及对氨氧化过程的贡献. 应用与环境生物学报, 2022, 28(4): 883-889 [35] Kim H, Bae H, Reddy KR, et al. Distributions, abundances and activities of microbes associated with the nitrogen cycle in riparian and stream sediments of a river tributary. Water Research, 2016, 106: 51-61 [36] Wang DL, Lin H, Ma Q, et al. Manganese oxides in Phragmites rhizosphere accelerates ammonia oxidation in constructed wetlands. Water Research, 2021, 205: 117688 [37] 刘文莉, 张崇邦, 刘亮, 等. 氨氧化基因丰度和潜在氨氧化速率对加拿大一枝黄花入侵和土壤类型的响应. 植物营养与肥料学报, 2020, 26(7): 1367-1374 [38] You J, Das A, Dolan EM, et al. Ammonia-oxidizing archaea involved in nitrogen removal. Water Research, 2009, 43: 1801-1809 [39] 卫雨西, 陈丽娟, 冯起, 等. 干旱区盐碱土微生物特征及其影响因素研究进展. 中国沙漠, 2024, 44(3): 18-30 [40] 张慧敏. 不同盐碱胁迫对土壤氮素转化和氨氧化微生物的影响. 硕士论文. 石河子: 石河子大学, 2018 [41] Clark IM, Hughes DJ, Fu Q, et al. Metagenomic approaches reveal differences in genetic diversity and relative abundance of nitrifying bacteria and archaea in contrasting soils. Scientific Reports, 2021, 11: 15905 [42] Xu AX, Li LL, Xie JH, et al. Changes in ammonia-oxidizing archaea and bacterial communities and soil nitrogen dynamics in response to long-term nitrogen fertilization. International Journal of Environmental Research and Public Health, 2022, 19: 2732 [43] Ren ML, Wang JJ. Phylogenetic divergence and adaptation of Nitrososphaeria across lake depths and freshwater ecosystems. ISME Journal, 2022, 16: 1491-1501 [44] 刘建利, 王英娜, 未丽, 等. 荒漠孑遗植物四合木对土壤古菌群落的影响. 生态学报, 2021, 41(9): 3548-3563 [45] Jiang Z, Tang SY, Liao YH, et al. Effect of low tempe-rature on contributions of ammonia oxidizing archaea and bacteria to nitrous oxide in constructed wetlands. Chemosphere, 2023, 313: 137585 [46] Sauder LA, Albertsen M, Engel K, et al. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME Journal, 2017, 11: 1142-1157 [47] Sun XX, Zhao J, Zhou X, et al. Salt tolerance-based niche differentiation of soil ammonia oxidizers. ISME Journal, 2022, 16: 412-422 [48] 李文兴, 郑曼曼, 王超, 等. 亚硝化球菌属(Nitrososphaera)可能是酸性土壤硝化作用的重要驱动者. 土壤, 2021, 53(1): 13-20 [49] 王卓群, 陈扣平, 吴吉春, 等. 太湖周边地下水中高硝酸盐负荷促进反硝化功能菌群富集. 中国环境科学, 2025, 45(1): 477-486 [50] Oshiki M, Saito T, Nakaya Y, et al. Growth of the Nitrosomonas europaea cells in the biofilm and planktonic growth mode: Responses of extracellular polymeric substances production and transcriptome. Journal of Bioscience and Bioengineering, 2023, 136: 430-437 [51] 潘红, 冯浩杰, 娄燕宏, 等. 农田土壤硝化微生物的生态学研究进展. 土壤通报, 2023, 54(3): 750-756 [52] Lin Q, Wang YL, Yu CS, et al. New insights into differential salinity tolerance between autotrophic and hetero-trophic partial nitrification. Journal of Environmental Chemical Engineering, 2023, 11: 109681 [53] 李凤霞, 王长军, 郭永忠. 盐碱地农田土壤氮素转化微生物及其影响因素研究进展. 宁夏农林科技, 2020, 61(8): 33-36 [54] Dai SY, Liu Q, Zhao J, et al. Ecological niche differentiation of ammonia-oxidising archaea and bacteria in aci-dic soils due to land use change. Soil Research, 2018, 56: 71-79 [55] 陈冰冰, 孙志高, 武慧慧, 等. 互花米草入侵对闽江口湿地土壤氨氧化微生物群落的影响. 中国环境科学, 2024, 44(4): 2309-2319 [56] Wang WG, Xie HC, Wang H, et al. Organic compounds evolution and sludge properties variation along partial nitritation and subsequent anammox processes treating reject water. Water Research, 2020, 184: 116197 [57] Ida T, Satoh M, Yabe R, et al. Identification of genus Nitrosovibrio, ammonia-oxidizing bacteria , by comparison of N-terminal amino acid sequences of phosphogly-cerate kinase. Journal of Bioscience and Bioengineering, 2004, 98: 380-383 [58] Wang H, Hou J, Zhou B, et al. Effects of water supply mode on nitrogen transformation and ammonia oxidation microorganisms in a tea garden. Agronomy, 2023, 13: 1279 [59] Christman GD, Cottrell MT, Popp BN, et al. Abundance, diversity, and activity of ammonia-oxidizing Prokaryotes in the Coastal Arctic Ocean in summer and winter. Applied and Environmental Microbiology, 2011, 77: 2026-2034 [60] 周禹廷, 王晓玲, 秦瑜, 等. 潴龙河中完全氨氧化微生物活性与N2O产生潜势的时空变化特征. 环境科学学报, 2024, 44(8): 323-336 [61] 赵春宇, 吴佳鹏, 张雨欣, 等. 外源氮添加对芦苇根系分泌物释放及土壤硝化作用的影响. 中国环境科学, 2024, 44(9): 5099-5107 [62] 唐瑞杰, 胡煜杰, 赵彩悦, 等. 不同水分条件下土地利用方式对我国热带地区土壤硝化过程及NO和N2O排放的影响. 环境科学, 2022, 43(11): 5159-5168 [63] 贺帅兵, 胡文革, 靳希桐, 等. 艾比湖湿地芦苇根际土壤氨氧化古菌的多样性和群落结构. 微生物学报, 2019, 59(8): 1576-1585 [64] Liu WZ, Xiong ZQ, Liu H, et al. Catchment agriculture and local environment affecting the soil denitrification potential and nitrous oxide production of riparian zones in the Han River Basin, China. Agriculture, Ecosystems & Environment, 2016, 216: 147-154 [65] Jin T, Zhang T, Ye L, et al. Diversity and quantity of ammonia-oxidizing archaea and bacteria in sediment of the Pearl River Estuary, China. Applied Microbiology and Biotechnology, 2011, 90: 1137-1145 [66] Fan HX, Bolhuis H, Stal LJ. Nitrification and nitrifying bacteria in a coastal microbial mat. Frontiers in Microbio-logy, 2015, 6: 1367 [67] 张小琴, 尹昌, 李政, 等. 长期施肥对水稻土典型氨氧化菌和全程氨氧化菌种群活性和丰度的影响. 中国农业科学, 2024, 57(14): 2803-2814 [68] 郭佳. 典型环境因子对硝化作用和氨氧化微生物生理生态的影响. 硕士论文. 重庆: 西南大学, 2016 |
[1] | ZENG Ziyin, YU Hanxia, ZHOU Qimeng, YOU Junjie, LI Weihua. The role of ammonia-oxidizing microorganisms in the replacement of Mikania micrantha by Pueraria lobata [J]. Chinese Journal of Applied Ecology, 2025, 36(6): 1849-1858. |
[2] | LIU Yanji, LIU Zikai, JIN Shengsheng, DENG Huiyu, SHEN Jupei, HE Jizheng. Response of gene abundance of ammonia-oxidizing microorganisms and denitrifying microorganisms to nitrogen and phosphorus addition in subtropical forest. [J]. Chinese Journal of Applied Ecology, 2023, 34(3): 639-646. |
[3] | WANG Wenjing, MU Changcheng, LI Meilin, SUN Ziqi, WANG Ting, XU Wen, ZHAO Haiming. Spatial differentiation and mechanism of carbon source/sink of forest swamps in riverside of Changbai Mountains, China [J]. Chinese Journal of Applied Ecology, 2023, 34(12): 3245-3255. |
[4] | ZHOU Zhong-yu, ZHANG Hai-kuo, LIANG Jia-hui, ZHANG Bao-gang, JIANG Wen-ting, TIAN Lin-lin, LI Yan, CAI Yan-jiang. Soil denitrifying enzyme activity and its influencing factors in a bamboo forest riparian zone in the upper reaches of the Taihu Lake Basin, China [J]. Chinese Journal of Applied Ecology, 2021, 32(9): 3070-3078. |
[5] | WANG Ke-hong, YUAN Xing-zhong, ZHANG Guan-xiong, WU Shuai-kai, LIU Shuang-shuang, ZHANG Meng-jie. Maintaining mechanisms of riparian invertebrate biodiversity: A review [J]. Chinese Journal of Applied Ecology, 2020, 31(3): 1043-1054. |
[6] | LIU Run-hong, CHANG Bin, RONG Chun-yan, JIANG Yong, YANG Rui-an, LIU Xing-tong, ZENG Hui-fang, FU Gui-huan. Niche of main woody plant populations of Pterocarya stenoptera community in riparian zone of Lijiang River, China [J]. Chinese Journal of Applied Ecology, 2018, 29(12): 3917-3926. |
[7] | ZHANG Yi-fan, ZHAO Qing-he, DING Sheng-yan, CAO Zi-hao, LIU Pu, WU Chang-song, BIAN Zi-qi. Effects of slope gradient and vegetation coverage on hydrodynamic characteristics of overland flow on silty riparian slope [J]. Chinese Journal of Applied Ecology, 2017, 28(8): 2488-2498. |
[8] | REN Ying, HE Ping, XU Jie, JIA Jiao. Distribution pattern of riparian invasive plants in Luanhe Basin, North China and its relationship with environment [J]. Chinese Journal of Applied Ecology, 2017, 28(6): 1843-1850. |
[9] | MIN Meng-yue, ZONG Xiao-xiang, DUAN Yi-fan, LI Ning, LENG Xin. Community characteristics in Qingyihe River basin of Xuchang section and their relationships with environmental factors. [J]. Chinese Journal of Applied Ecology, 2016, 27(7): 2111-2118. |
[10] | ZHAO Qing-he1,2, LIU Qian1,2, MA Li-jiao1,2, DING Sheng-yan1,2, LU Xun-ling1,2, TANG Qian1,2, XU Shan-shan1,2. Spatial variation in riparian soil properties and its response to environmental factors in typical reach of the middle and lower reaches of the Yellow River. [J]. Chinese Journal of Applied Ecology, 2015, 26(12): 3795-3802. |
[11] | CHEN Gang-liang, LI Jian-hua, YANG Chang-ming. Characteristics of soil denitrifying enzyme activity in riparian zones with different land use types in Chongming Island, Shanghai of China. [J]. Chinese Journal of Applied Ecology, 2013, 24(10): 2926-2932. |
[12] | DENG Hongbing, WANG Qingchun, DAI Limin, WANG Qingli, WANG Shaoxian . Flora analysis of riparian plant communities on the northern slope of Changbai Mountain [J]. Chinese Journal of Applied Ecology, 2003, (9): 1405-1410. |
[13] | DENG Hongbing, WANG Qingchun, DAI Limin, WANG Qingli, WANG Shaoxian . Flora analysis of riparian plant communities on the northern slope of Changbai Mountain [J]. Chinese Journal of Applied Ecology, 2003, (9): 1405-1410. |
[14] | Chen Jiquan. Riparian vegetation characteristics and their functions in ecosystems and landscapes [J]. Chinese Journal of Applied Ecology, 1996, 7(4): 439-448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||