[1] Rui YC, Wang YF, Chen CR, et al. Warming and gra-zing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China. Plant and Soil, 2012, 357: 73-87 [2] 陈美领, 陈浩, 毛庆功, 等. 氮沉降对森林土壤磷循环的影响. 生态学报, 2016, 36(16): 4965-4976 [3] Lang F, Bauhus J, Frossard E, et al. Phosphorus in forest ecosystems: New insights from an ecosystem nutrition perspective. Journal of Plant Nutrition and Soil Science, 2016, 179: 129-135 [4] Vitousek PM, Porder S, Houlton BZ, et al. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 2010, 20: 5-15 [5] Lie ZY, Zhou GY, Huang WJ, et al. Warming drives sustained plant phosphorus demand in a humid tropical forest. Global Change Biology, 2022, 28: 4085-4096 [6] 刘洢杋, 杨峻晖, 刘家齐, 等. 喀斯特和非喀斯特森林植物磷含量及土壤无机磷分级特征比较. 南方农业学报, 2023, 54(1): 110-118 [7] 宋同清, 王克林, 曾馥平. 西南喀斯特植物与环境. 北京: 科学出版社, 2015 [8] Fan YX, Lu SX, He M, et al. Long-term throughfall exclusion decreases soil organic phosphorus associated with reduced plant roots and soil microbial biomass in a subtropical forest. Geoderma, 2021, 404: 115309 [9] Pan FJ, Yang Q, Liang YM, et al. Lithology and eleva-ted temperature impact phoD-harboring bacteria on soil available P enhancing in subtropical forests. Science of the Total Environment, 2024, 948: 174815 [10] Li M, You YM, Tan XM, et al. Mixture of N2-fixing tree species promotes organic phosphorus accumulation and transformation in topsoil aggregates in a degraded karst region of subtropical China. Geoderma, 2022, 413: 115752 [11] Chen WF, Wang ET, Ji ZJ, et al. Recent development and new insight of diversification and symbiosis specifi-city of legume rhizobia: Mechanism and application. Journal of Applied Microbiology, 2020, 131: 553-563 [12] 潘复静, 章润阳, 秦国鑫, 等. 岩溶区固氮植物适应土壤氮素变化的潜在策略. 桂林理工大学学报, 2021, 41(4): 869-876 [13] Reed SC, Cleveland CC, Townsend AR. Relationships among phosphorus, molybdenum and free-living nitrogen fixation in tropical rain forests: Results from observational and experimental analyses. Biogeochemistry, 2013, 114: 135-147 [14] Pankievicz VSC, do Amaral FP, Santos KFDN, et al. Robust biological nitrogen fixation in a model grass-bacterial association. Plant Journal, 2015, 81: 907-919 [15] 赵玉洁, 张宇清. 固氮类植物的生态功能及其在生态修复中的应用. 干旱区资源与环境, 2012, 26(1): 179-183 [16] Augusto L, Delerue F, Gallet-Budynek A, et al. Global assessment of limitation to symbiotic nitrogen fixation by phosphorus availability in terrestrial ecosystems using a meta-analysis approach. Global Biogeochemical Cycles, 2013, 27: 804-815 [17] Yao YZ, Han BB, Dong XZ, et al. Disentangling the variability of symbiotic nitrogen fixation rate and the controlling factors. Global Change Biology, 2024, 30: e17206 [18] 曹建华, 袁道先, 杨慧, 等. 岩溶生态系统中的植物. 中国岩溶, 2022, 41(3): 365-377 [19] 梁燕, 刘家齐, 肖凡, 等. 氮沉降形态对西南岩溶区森林土壤有效磷来源的影响. 生态环境学报, 2024, 33(2): 192-201 [20] 梁月明, 苏以荣, 何寻阳, 等. 岩溶区典型灌丛植物根系丛枝菌根真菌群落结构解析. 环境科学, 2018, 39(12): 5657-5664 [21] Camenzind T, Hättenschwiler S, Treseder KK, et al. Nutrient limitation of soil microbial processes in tropical forests. Ecological Monographs, 2018, 88: 4-21 [22] Toro L, Pereira-Arias D, Perez-Aviles D, et al. Phosphorus limitation of early growth differs between nitrogen-fixing and nonfixing dry tropical forest tree species. New Phytologist, 2023, 237: 766-779 [23] Tian DS, Niu SL. A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 2015, 10: 024019 [24] 丁娜, 林华, 张学洪, 等. 植物根系分泌物与根际微生物交互作用机制研究进展. 土壤通报, 2022, 53(5): 1212-1219 [25] 黄梓敬, 徐侠, 张惠光, 等. 根系输入对森林土壤碳库及碳循环的影响研究进展. 南京林业大学学报: 自然科学版, 2022, 46(1): 25-32 [26] Liu J, Shen YX, Zhu XA, et al. Spatial distribution patterns of rock fragments and their underlying mechanism of migration on steep hillslopes in a karst region of Yunnan Province, China. Environmental Science and Pollution Research, 2019, 26: 24840-24849 [27] Xie B, Jones P, Dwivedi R, et al. Evaluation, comparison, and unique features of ecological security in southwest China: A case study of Yunnan Province. Ecological Indicators, 2023, 153: 110453 [28] Tang CQ, Li YH, Zhang ZY, et al. Effects of management on vegetation dynamics and associated nutrient cycling in a karst area, Yunnan, SW China. Landscape and Ecological Engineering, 2015, 11: 177-188 [29] Wen DN, Yang L, Ni K, et al. Topography-driven differences in soil N transformation constrain N availabi-lity in karst ecosystems. Science of the Total Environment, 2024, 908: 168363 [30] Liu L, He XY, Wang KL, et al. The Bradyrhizobium-legume symbiosis is dominant in the shrubby ecosystem of the Karst region, Southwest China. European Journal of Soil Biology, 2015, 68: 1-8 [31] Li DD, Zhang XY, Dungait JAJ, et al. Changes in the biological N2-fixation rates and diazotrophic community as vegetation recovers on abandoned farmland in a karst region of China. Applied Soil Ecology, 2021, 158: 103808 [32] 刘家齐, 梁燕, 肖凡, 等. 西南喀斯特区域不同植被恢复阶段土壤磷主要来源及其季节变化. 应用生态学报, 2023, 34(12): 3313-3321 [33] 罗原骏, 黄来明, 袁大刚. 基于31P NMR的自然成土过程中有机磷组分演变特征及影响因素研究进展. 土壤学报, 2023, 60(1): 23-38 [34] Chen H, Chen ML, Li DJ, et al. Responses of soil phosphorus availability to nitrogen addition in a legume and a non-legume plantation. Geoderma, 2018, 322: 12-18 [35] Shi SW, Peng CH, Wang M, et al. A global meta-ana-lysis of changes in soil carbon, nitrogen, phosphorus and sulfur, and stoichiometric shifts after forestation. Plant and Soil, 2016, 407: 323-340 [36] Li L, Li SM, Sun JH, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104: 11192-11196 [37] 张晓晴, 曾泉鑫, 元晓春, 等. 氮添加诱导的磷限制改变了亚热带黄山松林土壤微生物群落结构. 应用生态学报, 2023, 34(1): 203-212 [38] Romanyà J, Blanco-Moreno JM, Sans FX. Phosphorus mobilization in low-P arable soils may involve soil orga-nic C depletion. Soil Biology and Biochemistry, 2017, 113: 250-259 [39] Pan FJ, Zhang W, Liu SJ, et al. Leaf N:P stoichiome-try across plant functional groups in the karst region of southwestern China. Trees, 2015, 29: 883-892 [40] 车荣晓, 邓永翠, 吴伊波, 等. 生物固氮与有效氮的关系: 从分子到群落. 生态学杂志, 2017, 36(1): 224-232 [41] 严君, 韩晓增. 盆栽条件下土壤无机氮浓度对大豆结瘤、固氮和产量的影响. 中国农业科学, 2014, 47(10): 1929-1938 [42] Ning QS, Hättenschwiler S, Lü XT, et al. Carbon limitation overrides acidification in mediating soil microbial activity to nitrogen enrichment in a temperate grassland. Global Change Biology, 2021, 27: 5976-5988 [43] 李娟, 张立成, 章明清, 等. 长期施用尿素降低赤红壤旱地耕层pH的特征与预测. 植物营养与肥料学报, 2022, 28(12): 2161-2171 |