Chinese Journal of Applied Ecology ›› 2025, Vol. 36 ›› Issue (8): 2525-2534.doi: 10.13287/j.1001-9332.202508.027
• Original Articles • Previous Articles Next Articles
WANG Xinyue, WANG Chuanwen, LIANG Huiyi, GAO Dongyang, YANG Danchen, QIU Ling, GAO Tian*
Received:
2024-12-23
Accepted:
2025-06-12
Online:
2025-08-18
Published:
2026-02-18
WANG Xinyue, WANG Chuanwen, LIANG Huiyi, GAO Dongyang, YANG Danchen, QIU Ling, GAO Tian. Construction of an urban ecological network and landscape optimization in Xi’an based on bird habitats[J]. Chinese Journal of Applied Ecology, 2025, 36(8): 2525-2534.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202508.027
[1] 梁华秋, 沈梦晗, 邵明, 等. 基于生态系统服务供需的临沂市固碳生态网络构建. 应用生态学报, 2024, 35(3): 759-768 [2] Barnosky AD, Matzke N, Tomiya S, et al. Has the earth’s sixth mass extinction already arrived? Nature, 2011, 471: 51-57 [3] Huang Y, Zhao YZ, Li SH, et al. The effects of habitat area, vegetation structure and insect richness on bree-ding bird populations in Beijing urban parks. Urban Forestry & Urban Greening, 2015, 14: 1027-1039 [4] Lavorel S, Bayer A, Bondeau A, et al. Pathways to bridge the biophysical realism gap in ecosystem services mapping approaches. Ecological Indicators, 2017, 74: 241-260 [5] Fraixedas S, Lindén A, Piha M, et al. A state-of-the-art review on birds as indicators of biodiversity: Advances, challenges, and future directions. Ecological Indicators, 2020, 118: 106728 [6] Threlfall CG, Williams NSG, Hahs AK, et al. Approaches to urban vegetation management and the impacts on urban bird and bat assemblages. Landscape and Urban Planning, 2016, 153: 28-39 [7] Cai Z, La Sorte FA, Chen Y, et al. The surface urban heat island effect decreases bird diversity in Chinese cities. Science of the Total Environment, 2023, 902: 166200 [8] 赵伊琳, 王成, 白梓彤, 等. 城市化鸟类群落变化及其与城市植被的关系. 生态学报, 2021, 41(2): 479-489 [9] Barbaro L, Rossi J, Vetillard F, et al. The spatial distribution of birds and carabid beetles in pine plantation forests: The role of landscape composition and structure. Journal of Biogeography, 2007, 34: 652-664 [10] Lichstein JW, Simons TR, Franzreb KE. Landscape effects on breeding songbird abundance in managed forests. Ecological Applications, 2002, 12: 836-857 [11] 邱玲, 高天, 张硕新. 融入植被结构因子的生态单元制图法在城市生物多样性信息采集中的应用. 生态学报, 2010, 30(14): 3688-3699 [12] Farina A. Landscape structure and breeding bird distribution in a sub-Mediterranean agro-ecosystem. Landscape Ecology, 1997, 12: 365-378 [13] 张征恺, 黄甘霖. 中国城市鸟类学研究进展. 生态学报, 2018, 38(10): 3357-3367 [14] 高天, 邱玲, 陈存根. 生态单元制图在国外自然保护和城乡规划中的发展与应用. 自然资源学报, 2010, 25(6): 978-989 [15] Lookingbill TR, Gardner RH, Ferrari JR, et al. Combining a dispersal model with network theory to assess habitat connectivity. Ecological Applications, 2010, 20: 427-441 [16] Liu ZH, Huang QD, Tang GP. Identification of urban flight corridors for migratory birds in the coastal regions of shenzhen city based on three-dimensional landscapes. Landscape Ecology, 2021, 36: 2043-2057 [17] Gu ZL, Gong J, Wang Y. Construction and evaluation of ecological networks among natural protected areas based on “quality-structure-function”: A case study of the Qinghai-Tibet area. Ecological Indicators, 2023, 151: 110228 [18] Yang MX, Callaghan CT, Wu JY. How do birds with different traits respond to urbanization? A phylogenetically controlled analysis based on citizen science data and a diverse urbanization measurement. Landscape and Urban Planning, 2023, 237: 104801 [19] Xie J, Xie BG, Zhou KC, et al. Factors impacting ecological network in Changsha-Zhuzhou-Xiangtan urban agglomeration, China-Based on the perspective of functional performance. Ecological Indicators, 2023, 154: 110771 [20] Morris ZB, Weissburg M, Bras B. Ecological network analysis of urban-industrial ecosystems. Journal of Industrial Ecology, 2021, 25: 193-204 [21] Xu DY, Ding X. Assessing the impact of desertification dynamics on regional ecosystem service value in North China from 1981 to 2010. Ecosystem Services, 2018, 30: 172-180 [22] Xue LQ, Zhu BL, Wu YP, et al. Dynamic projection of ecological risk in the Manas River basin based on terrain gradients. Science of the Total Environment, 2019, 653: 283-293 [23] Dondina O, Orioli V, Chiatante G, et al. Practical insights to select focal species and design priority areas for conservation. Ecological Indicators, 2020, 108: 105767 [24] Freemark KE, Merriam HG. Importance of area and habitat heterogeneity to bird assemblages in temperate forest fragments. Biological Conservation, 1986, 36: 115-141 [25] 西安市统计局, 国家统计局西安调查队. 西安统计年鉴. 北京: 中国统计出版社, 2023: 4 [26] 黄越, 顾燚芸, 阳文锐, 等. 如何在北京充分实现受胁鸟类栖息地保护. 生物多样性, 2021, 29(3): 340-350 [27] 马星, 王浩, 余蔚, 等. 基于MaxEnt模型分析广东省鸟类多样性热点分布及保护空缺. 生物多样性, 2021, 29(8): 1097-1107 [28] 张达, 曾坚, 艾合麦提·那麦提. 高强度开发地区鸟类自然保护地保护空缺识别: 以天津市为例. 应用生态学报, 2023, 34(6): 1621-1629 [29] 陕西省人民政府. 陕西省重点保护野生动物名录[EB/OL]. (2022-10-10) [2024-12-12]. https://lyj.shaanxi.gov.cn/zwxx/tzgg/202206/P020220706321564-614218.pdf [30] 孔维尧, 李欣海, 邹红菲. 最大熵模型在物种分布预测中的优化. 应用生态学报, 2019, 30(6): 2116-2128 [31] Callaghan CT, Major RE, Lyons MB, et al. The effects of local and landscape habitat attributes on bird diversity in urban greenspaces. Ecosphere, 2018, 9: e2347 [32] Chen XQ, Kang BY, Li MY, et al. Identification of prio-rity areas for territorial ecological conservation and restoration based on ecological networks: A case study of Tianjin City, China. Ecological Indicators, 2023, 146: 109809 [33] Li XX, Ou XY, Sun XY, et al. Urban biodiversity conservation: A framework for ecological network construction and priority areas identification considering habit differences within species. Journal of Environmental Management, 2024, 365: 121512 [34] 邱玲, 朱玲, 王家磊, 等. 基于生态单元制图的宝鸡市城区生物多样性保护规划研究. 生态学报, 2020, 40(1): 170-180 [35] Knapp S, Kühn I, Schweiger O, et al. Challenging urban species diversity: Contrasting phylogenetic patterns across plant functional groups in Germany. Ecology Letters, 2008, 11: 1054-1064 [36] Patankar S, Jambhekar R, Suryawanshi KR, et al. Which traits influence bird survival in the city? A review. Land, 2021, 10: 92 [37] Souza FL, Valente-Neto F, Severo-Neto F, et al. Impervious surface and heterogeneity are opposite drivers to maintain bird richness in a Cerrado City. Landscape and Urban Planning, 2019, 192: 103643 [38] 庄艳美, 孔繁花, 尹海伟, 等. 城市绿地空间格局对鸟类群落影响的研究进展. 南京林业大学学报: 自然科学版, 2012, 36(3): 131-136 [39] 谭丽凤. 柳州城市园林不同微栖息地类型冬季鸟类群落结构研究. 湖北农业科学, 2013, 52(1): 134-138 [40] 高天, 邱玲, 陈存根. 融入植被连续性因子的生态单元制图法在城市生物多样性维护中的应用. 应用生态学报, 2010, 21(9): 2295-2303 [41] 彭子嘉, 高天, 师超众, 等. 校园绿地植被结构、生境特征与鸟类多样性关系. 生态学杂志, 2020, 39(9): 3032-3042 [42] 杨刚, 许洁, 王勇, 等. 城市公园植被特征对陆生鸟类集团的影响. 生态学报, 2015, 35(14): 4824-4835 [43] 朱光, 王雪, 张文文, 等. 城市景观格局对鸟类群落的影响: 以南京溧水区为例. 生态与农村环境学报, 2022, 38(3): 327-333 [44] 汉瑞英, 赵志平, 肖能文. 生物多样性保护优先区生态网络构建与优化: 以太行山片区为例. 西北林学院学报, 2021, 36(2): 61-67 [45] Hou W, Zhou W, Li JY, et al. Simulation of the potential impact of urban expansion on regional ecological corridors: A case study of Taiyuan, China. Sustainable Cities and Society, 2022, 83: 103933 [46] Li PX, Cao H, Sun W, et al. Quantitative evaluation of the rebuilding costs of ecological corridors in a highly urbanized city: The perspective of land use adjustment. Ecological Indicators, 2022, 141: 109130 [47] Yang Y, Zhou YR, Feng Z, et al. Making the case for parks: Construction of an ecological network of urban parks based on birds. Land, 2022, 11: 1144 [48] Brandner A, Schunko C. Urban wild food foraging locations: Understanding selection criteria to inform green space planning and management. Urban Forestry & Urban Greening, 2022, 73: 127596 [49] Zhao SM, Ma YF, Wang JL, et al. Landscape pattern analysis and ecological network planning of Tianjin City. Urban Forestry & Urban Greening, 2019, 46: 126479 [50] Hostetler M, Holling CS. Detecting the scales at which birds respond to structure in urban landscapes. Urban Ecosystems, 2000, 4: 25-54 [51] Bonthoux S, Balent G, Augiron S, et al. Geographical generality of bird-habitat relationships depends on species traits. Diversity and Distributions, 2017, 23: 1343-1352 [52] 谢世林, 曹垒, 逯非, 等. 鸟类对城市化的适应. 生态学报, 2016, 36(21): 6696-6707 |
[1] | ZHOU Shiwen, LI Sui, ZHANG Yuyang. Bird habitat network construction in Shenyang City based on improved circuit theory of neighborhood landscape compatibility [J]. Chinese Journal of Applied Ecology, 2025, 36(8): 2515-2524. |
[2] | YU Jinghua, FENG Yue, GAO Chang, HE Xingyuan, YU Guirui. Path of scientific development in Greater Khingan Mountains area of Heilongjiang Province, China [J]. Chinese Journal of Applied Ecology, 2025, 36(8): 2535-2540. |
[3] | DENG Qipeng, LIU Gengyuan, YANG Qing, CHANG Weicen, CHEN Yu. From two to three dimensions: Advanced techniques for evaluating ecosystem services in urban green spaces [J]. Chinese Journal of Applied Ecology, 2025, 36(8): 2541-2551. |
[4] | CHEN Liding, ZHANG Yanjie, MA Sike. Multi-scale characteristics and scale selection in landscape ecological studies [J]. Chinese Journal of Applied Ecology, 2025, 36(7): 1933-1940. |
[5] | ZHAO Xiaoyu, ZHANG Mengyuan, CHANG Jiahui, SHU Shunyi, FAN Shuxin, DONG Li. Health status of landscaping trees in different habitats in Beijing, China [J]. Chinese Journal of Applied Ecology, 2025, 36(7): 2028-2038. |
[6] | FU Wenxin, GAO Chang, REN Guanyao, LIU Dianfeng. Construction of composite blue-green ecological network of Wuhan City based on complex network theory [J]. Chinese Journal of Applied Ecology, 2025, 36(7): 2139-2149. |
[7] | ZHOU Xiaoyan, DI Liare·tayier, HOU Meiling, HE Yiyi, DING Xiaofei. Assessing land carbon metabolism in the Hubei Section of the Three Gorges Reservoir Area based on ecological network [J]. Chinese Journal of Applied Ecology, 2025, 36(7): 2150-2158. |
[8] | SANGZHU Zhaxi, YANG Junyi, AN Zhengxu, WU Jiayi, LU Xiaoping, WANG Jing, GENG Shuo, ZHU Yinjiu, LI Ning, SHENG Yan, Laqiong, MENG Xiuxiang. Seasonal habitat suitability analysis of Procapra picti-caudata in the northern Tanggula region of Sanjiang-yuan National Park, China [J]. Chinese Journal of Applied Ecology, 2025, 36(7): 2239-2245. |
[9] | HAO Zixuan, MA Jiakai, WANG Ao, WANG Jinfang, ZHEN Zhilei. Assessing the changes of habitat quality and its influencing factor in the Shanxi Section of the Yellow River Basin based on InVEST-MGWR model [J]. Chinese Journal of Applied Ecology, 2025, 36(5): 1478-1486. |
[10] | SONG Zhongkang, LIU Zhongxu, DENG Changrong, DUAN Guozhen, FAN Guanghui, LI Jianling. Predicting suitable habitats of high-yield and -quality Lycium barbarum based on climate characteristics in production area of Qinghai, China [J]. Chinese Journal of Applied Ecology, 2025, 36(4): 1118-1126. |
[11] | LUO Caihong, WANG Wanyu, HUANG Jinxia, WANG Peng, MA Maohua, CHEN Jilong, ZHAO Cunfeng. Predicting the impact of climate change on the habitat distribution of Grus nigricollis based on the MaxEnt model [J]. Chinese Journal of Applied Ecology, 2025, 36(4): 1251-1260. |
[12] | CAO Weijia, YANG Qingkang, JIA Guoxiu, BAI Huiting, GUO Zixuan, WANG Zhenxing, WANG Lixin, WEN Lu. Construction and optimization of ecological network based on ecological vulnerability in Ulanqab, Inner Mongolia, China. [J]. Chinese Journal of Applied Ecology, 2025, 36(2): 376-382. |
[13] | YAN Zhongshan, SHAO Mingqin, WANG Jianying. Prediction of suitable overwintering habitat for Grus grus and key factors influencing population distribution in China. [J]. Chinese Journal of Applied Ecology, 2025, 36(2): 578-586. |
[14] | YANG Jiayue, DING Guoyu, TIAN Xiujun. Research progress on the application of the MaxEnt model in species habitat prediction. [J]. Chinese Journal of Applied Ecology, 2025, 36(2): 614-624. |
[15] | CAO Yu, DENG Boyang, WANG Yajuan, YE Jiayang, SU Dan, FANG Xiaoqian. Habitat fragmentation and biodiversity response: Controversy, attribution, and prospects. [J]. Chinese Journal of Applied Ecology, 2025, 36(2): 625-636. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||