Chinese Journal of Applied Ecology ›› 2020, Vol. 31 ›› Issue (8): 2749-2758.doi: 10.13287/j.1001-9332.202008.037
Previous Articles Next Articles
YAO Ze-xiu, LI Yong-chun*, LI Yong-fu, CHEN Zhi-hao
Received:
2019-12-13
Revised:
2020-05-12
Online:
2020-08-15
Published:
2021-02-15
Supported by:
YAO Ze-xiu, LI Yong-chun, LI Yong-fu, CHEN Zhi-hao. Effects of different tea plantation ages on soil microbial community structure and diversity[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2749-2758.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202008.037
[1] 林生, 庄家强, 陈婷, 等. 福建安溪不同年限茶树土壤养分与微生物Biolog功能多样性的差异分析. 中国生态农业学报, 2012, 20(11): 1471-1477 [Lin S, Zhuang J-Q, Chen T, et al. Analysis of nutrient and microbial biolog function diversity in tea soils with diffe-rent planting years in Fujian Anxi. Chinese Journal of Eco-Agriculture, 2012, 20(11): 1471-1477] [2] Li W, Zheng ZC, Li TX, et al. Effect of tea plantation age on the distribution of soil organic carbon fractions within water-stable aggregates in the hilly region of Western Sichuan, China. Catena, 2015, 133: 198-205 [3] 余继忠, 徐家明, 黄海涛, 等. 重修剪、台刈和改植换种三种茶园改造方式的比较. 茶叶科学, 2008, 28(3): 221-227 [Yu J-Z, Xu J-M, Huang H-T, et al. Comparison on the different rehabilitation methods of heavy pruning, collar pruning and replanting. Journal of Tea Science, 2008, 28(3): 221-227] [4] 王海斌, 陈晓婷, 丁力, 等. 土壤酸度对茶树根际土壤微生物群落多样性影响. 热带作物学报, 2018, 39(3): 448-454 [Wang H-B, Chen X-T, Ding L, et al. Effect of soil acidity on microbial diversity in rhizosphe-ric soils of tea plants. Chinese Journal of Tropical Crops, 2018, 39(3): 448-454] [5] Yang XD, Ma LF, Ji LF, et al. Long-term nitrogen fertilization indirectly affects soil fungi community structure by changing soil and pruned litter in a subtropical tea (Camellia sinensis L.) plantation in China. Plant and Soil, 2019, 444: 409-426 [6] 张帅, 户杉杉, 潘荣艺, 等. 茶园土壤酸化研究进展. 茶叶, 2019, 45(1): 17-23 [Zhang S, Hu S-S, Pan R-Y, et al. Research progress on soil acidification of tea garden. Journal of Tea, 2019, 45(1): 17-23] [7] 张玥, 胡雲飞, 王树茂, 等. 茶园年限对根际土壤真菌群落结构及多样性的影响. 应用与环境生物学报, 2018, 24(5): 972-977 [Zhang Y, Hu Y-F, Wang S-M, et al. The structure and diversity of the fungal community in rhizosphere soil from tea gardens of different ages. Chinese Journal of Applied and Environmental Bio-logy, 2018, 24(5): 972-977] [8] 李贞霞, 陈倩倩, 胡宏赛, 等. 信阳茶区不同植茶年限土壤酶活性演变. 生态环境学报, 2018, 27(6): 1076-1081 [Li Z-X, Chen Q-Q, Hu H-S, et al. The evolution of soil enzyme activities in different tea plantation ages in Xinyang tea-producing area. Ecology and Environmental Sciences, 2018, 27(6): 1076-1081] [9] 林生, 庄家强, 陈婷, 等. 不同年限茶树根际土壤微生物群落PLFA生物标记多样性分析. 生态学杂志, 2013, 32(1): 64-71 [Lin S, Zhuang J-Q, Chen T, et al. Microbial diversity in rhizosphere soils of different planting year tea trees: An analysis with phospholipid fatty acid biomarkers. Chinese Journal of Ecology, 2013, 32(1): 64-71] [10] 范利超, 韩文炎, 李鑫, 等. 茶园及相邻林地土壤N2O排放的垂直分布特征. 应用生态学报, 2015, 26(9): 2632-2638 [Fan L-C, Han W-Y, Li X, et al. Vertical distribution characteristics of N2O emission in tea garden and its adjacent woodland. Chinese Journal of Applied Ecology, 2015, 26(9): 2632-2638] [11] 刘丽, 徐明恺, 汪思龙, 等. 杉木人工林土壤质量演变过程中土壤微生物群落结构变化. 生态学报, 2013, 33(15): 4692-4706 [Liu L, Xu M-K, Wang S-L, et al. Effect of different Cunninghamia lanceolata plantation soil qualities on soil microbial community structure. Acta Ecologica Sinica, 2013, 33(15): 4692-4706] [12] Wang SQ, Li TX, Zheng ZC, et al. Soil aggregate-associated bacterial metabolic activity and community structure in different aged tea plantations. Science of the Total Environment, 2019, 654: 1023-1032 [13] 王海斌, 陈晓婷, 丁力, 等. 连作茶树根际土壤自毒潜力、酶活性及微生物群落功能多样性分析. 热带作物学报, 2018, 39(5): 852-857 [Wang H-B, Chen X-T, Ding L, et al. Analysis on autotoxic potential, enzyme activity and microbial community function diversity of the rhizosphere soils from tea plants with continuous cropping years. Chinese Journal of Tropical Crops, 2018, 39(5): 852-857] [14] 王海斌, 陈晓婷, 丁力, 等. 不同树龄茶树根际土壤细菌多样性的T-RFLP分析. 应用与环境生物学报,2018, 24(4): 775-782 [Wang H-B, Chen X-T, Ding L, et al. Using T-RFLP technology to analyze bacterial diversity in the rhizospheric soils of tea tree at different ages. Chinese Journal of Applied and Environmental Bio-logy, 2018, 24(4): 775-782] [15] 韩文炎, 王皖蒙, 郭赟, 等. 茶园土壤细菌丰度及其影响因子研究. 茶叶科学, 2013, 33(2): 147-154 [Han W-Y, Wang W-M, Guo Y, et al. Bacterial abundance of tea garden soils and its influencing factors. Journal of Tea Science, 2013, 33(2): 147-154] [16] 叶晶, 何立平, 李东宾, 等. 土地整理对土壤微生物群落多样性的影响. 应用生态学报, 2016, 27(4): 1265-1270 [Ye J, He L-P, Li D-B, et al. Effect of land consolidation on soil microbial community diversity. Chinese Journal of Applied Ecology, 2016, 27(4): 1265-1270] [17] Strickland MS, Rousk J. Considering fungal: Bacterial dominance in soils: Methods, controls, and ecosystem implications. Soil Biology and Biochemistry, 2010, 42: 1385-1395 [18] Fierer N, Jackson JA, Vilgalys R, et al. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Applied and Environmental Microbiology, 2005, 71: 4117-4120 [19] 薛冬, 姚槐应, 黄昌勇, 等. 茶园土壤微生物群落基因多样性. 应用生态学报, 2007, 18(4): 843-847 [Xue D, Yao H-Y, Huang C-Y, et al. Genetic diversity of microbial communities in tea orchard soil. Chinese Journal of Applied Ecology, 2007, 18(4): 843-847] [20] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999 [Lu R-K. Analytical Methods for Soil Agro-chemistry. Beijing: China Agricultural Science and Technology Press, 1999] [21] Tiquia MS. Microbial community dynamics in manure composts based on 16S and 18S rDNA T-RFLP profiles. Environmental Technology, 26: 1101-1114 [22] 文东新, 杨宁, 杨满元. 衡阳紫色土丘陵坡地植被恢复对土壤微生物功能多样性的影响. 应用生态学报, 2016, 27(8): 2645-2654 [Wen D-X, Yang N, Yang M-Y. Effects of re-vegetation on soil microbial functional diversity in purple soils at different revegetation stages on sloping-land in Hengyang, Hunan Province. Chinese Journal of Applied Ecology, 2016, 27(8): 2645-2654] [23] 赵杏, 钟一铭, 杨京平, 等. 不同植茶年限土壤碳氮养分及胞外酶对干旱胁迫的响应. 生态学报, 2017, 37(2): 387-394 [Zhao X, Zhong Y-M, Yang J-P, et al. The response of soil nutrients (carbon and nitrogen) and extracellular enzyme activities to drought in various cultivation ages from tea orchards. Acta Ecologica Sinica, 2017, 37(2): 387-394] [24] 郑子成, 王永东, 李廷轩, 等. 退耕对土壤团聚体稳定性及有机碳分布的影响. 自然资源学报, 2011, 26(1): 119-127 [Zheng Z-C, Wang Y-D, Li T-X, et al. Effect of abandoned cropland on stability and distributions of organic carbon in soil aggregates. Journal of Natural Resources, 2011, 26(1): 119-127] [25] Wang SQ, Li TX, Zheng ZC, et al. Soil organic carbon and nutrients associated with aggregate fractions in a chronosequence of tea plantations. Ecological Indicators, 2019, 101: 444-452 [26] 杨扬, 刘炳君, 房江育, 等. 不同植茶年龄茶树根际与非根际土壤微生物及酶活性特征研究. 中国农学通报, 2011, 27(27): 118-121 [Yang Y, Liu B-J, Fang J-Y, et al. The study on characteristics of microbes and enzyme activity in rhizosphere and out-rhizosphere soil of tea garden at various ages. Chinese Agricultural Science Bulletin, 2011, 27(27): 118-121] [27] 韩文炎, 阮建云, 林智, 等. 茶园土壤主要营养障碍因子及系列茶树专用肥的研制. 茶叶科学, 2002, 22(1): 70-74 [Han W-Y, Ruan J-Y, Lin Z, et al. The major nutritional limiting factors in tea soils and development of tea speciality fertilizer series. Journal of Tea Science, 2002, 22(1): 70-74] [28] Han WY, Kemmitt SJ, Brookes PC. Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity. Soil Biology and Biochemistry, 2007, 39: 1468-1478 [29] Xue D, Yao HY, Huang CY. Microbial biomass, N mineralization and nitrification, enzyme activities, and microbial community diversity in tea orchard soils. Plant and Soil, 2006, 288: 319-331 [30] Pandey A, Palni LMS. The rhizosphere effect of tea on soil microbes in a Himalayan monsoonal location. Biology and Fertility of Soils, 1996, 21: 131-137 [31] 张明锦, 陈良华, 张健, 等. 马尾松人工林林窗内凋落叶微生物生物量碳和氮的动态变化. 应用生态学报, 2016, 27(3): 672-680 [Zhang M-J, Chen L-H, Zhang J, et al. Dynamics of microbial biomass carbon and nitrogen during foliar litter decomposition under artificial forest gap in Pinus massoniana plantation. Chinese Journal of Applied Ecology, 2016, 27(3): 672-680] [32] 许平辉, 王飞权, 齐玉岗, 等. 丛枝菌根真菌对茶树抗旱性的影响. 西北农业学报, 2017, 26(7): 1033-1040 [Xu P-H, Wang F-Q, Qi Y-G, et al. Effect of arbuscular mycorrhiza fungi on drought resistance in tea plant (Camellia sinensis). Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(7): 1033-1040] [33] Singh S, Pandey A, Kumar B, et al. Enhancement in growth and quality parameters of tea (Camellia sinensis L., O. Kuntze) through inoculation with arbuscular mycorrhizal fungi in an acid soil. Biology and Fertility of Soils, 2010, 46: 427-433 [34] 王飞, 李世贵, 徐凤花, 等. 连作障碍发生机制研究进展. 中国土壤与肥料, 2013(5): 6-13 [Wang F, Li S-G, Xu F-H, et al. The research progress on mechanism of continuous cropping obstacle. Soil and Fertilizer Sciences in China, 2013(5): 6-13] [35] Ge CR, Xue D, Yao HY. Microbial biomass, community diversity, and enzyme activities in response to urea application in tea orchard soils. Communications in Soil Science and Plant Analysis, 2010, 41: 797-810 [36] Bardgett RD, Lovell RD, Hobbs PJ, et al. Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biology and Biochemistry, 1999, 31: 1021-1030 [37] 陈志豪, 梁雪, 李永春,等. 不同施肥模式对雷竹林土壤真菌群落特征的影响. 应用生态学报, 2017, 28(4): 1168-1176 [Chen Z-H, Liang X, Li Y-C, et al. Effects of different fertilization regimes on soil fungal communities under Phyllostachys violascens stand. Chinese Journal of Applied Ecology, 2017, 28(4): 1168-1176] [38] Fierer N, Strickland MS, Liptzin D, et al. Global patterns in belowground communities. Ecology Letters, 2009, 12: 1238-1249 [39] Li YC, Li YF, Chang SX, et al. Linking soil fungal community structure and function to soil organic carbon chemical composition in intensively managed subtropical bamboo forests. Soil Biology and Biochemistry, 2017, 107: 19-31 |
[1] | LIANG Xueli, LIANG Xiaoxia, MAO Xiaoya, CHAI Baofeng, JIA Tong. Distribution pattern and influencing factors of bacterial communities in different soil depths of Caragana jubata shurb in Luya Mountain, China [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 381-389. |
[2] | XUE Zhijing, QU Tingting, LIU Chunhui, LIU Xiaokang, WANG Rui, WANG Ning, ZHOU Zhengchao, DONG Zhibao. Contribution of microbial necromass to soil organic carbon formation during litter decomposition under incubation conditions [J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1845-1852. |
[3] | JIN Taotao, ZHANG Foyi, ZHENG Weibin, XUE Huajian, LUO Tianyu, ZHANG Miao, LIU Wei, WANG Qiong. Diversity of medium and small-sized soil fauna community in different urban-rural green spaces and its influencing factors in Nanchang, China [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1404-1414. |
[4] | ZHANG Guanhua, NIU Jun, YI Liang, SUN Baoyang, LI Jianming, XIAO Hai. Ecological stoichiometry of soil and microbial biomass carbon, nitrogen and phosphorus in tea plantations with different ages [J]. Chinese Journal of Applied Ecology, 2023, 34(4): 969-976. |
[5] | DING Shuang, WEI Shengzhao, CHEN Zhenliang, SHAO Jing, DUAN Fengrui, YAN Yu, DUAN Xingwu. Variation characteristics of microorganisms at different soil depths of typical forests in southwest China. [J]. Chinese Journal of Applied Ecology, 2023, 34(3): 614-622. |
[6] | SHAO Ya-jun, WANG Li-yan, TAN Yun-yan, LENG Peng, WANG Jian-qing, XU Jing-hua, SHI Xiu-zhen. Effects of common afforestation tree species on soil bacterial community and microbial functional guilds in subtropical forests [J]. Chinese Journal of Applied Ecology, 2023, 34(1): 235-241. |
[7] | ZHANG Xiao-jing, MA Wang, WANG Zheng-wen. Effects of mowing regime on community characteristics and forage yield and quality in Hulun Buir, China [J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1555-1562. |
[8] | LIANG Yan, MING An-gang, HE You-jun, LUO Ying-hua, TAN Ling, QIN Lin. Structure and function of soil bacterial communities in the monoculture and mixed plantation of Pinus massoniana and Castanopsis hystrix in southern subtropical China [J]. Chinese Journal of Applied Ecology, 2021, 32(3): 878-886. |
[9] | FANG Tao, LI Yong-chun, YAO Ze-xiu, LI Yong-fu, WANG Xing-meng, WANG Yue, YU Ye-fei. Effects of planting broadleaf trees and Moso bamboo on soil carbon mineralization and microbial community structure [J]. Chinese Journal of Applied Ecology, 2021, 32(1): 82-92. |
[10] | LI Yu-hui, HAO Tao, GONG Xu-sheng, YANG Yu-jing, LI Zhong-qiang. Species richness and influencing factors of aquatic plant in the Kaidu River Basin, Xinjiang, China [J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1691-1698. |
[11] | ZOU Wen-xiu, HAN Xiao-zeng, LU Xin-chun, CHEN Xu, YAN Jun, SONG Bao-hui, YANG Ning, LIN Qing-hua, HE Yu. Effects of the construction of fertile and cultivated upland soil layer on soil fertility and maize yield in black soil region in Northeast China. [J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4134-4146. |
[12] | LIU Bao, WU Wen-feng, LIN Si-zu, LIN Kai-min. Characteristics of soil microbial biomass carbon and nitrogen and its seasonal dynamics in four mid-subtropical forests [J]. Chinese Journal of Applied Ecology, 2019, 30(6): 1901-1910. |
[13] | HUANG Shuang-shuang, HUO Chang-fu, XIE Hong-tu, WANG Peng, CHENG Wei-xin. Soil organic carbon mineralization and priming effects in the topsoil and subsoil under no-tillage black soil. [J]. Chinese Journal of Applied Ecology, 2019, 30(6): 1877-1884. |
[14] | ZHANG Rui, LI Peng-zhan, WANG Li. Relationship between soil moisture dynamics, crop growth and precipitation in rain-fed area of the Loess Tableland, China. [J]. Chinese Journal of Applied Ecology, 2019, 30(2): 359-369. |
[15] | LI Ping, SHI Rong-jiu, ZHAO Feng, YU Jing-hua, CUI Xiao-yang, HU Jin-gui, ZHANG Ying. Soil bacterial community structure and predicted functions in the larch forest during succession at the Greater Khingan Mountains of Northeast China [J]. Chinese Journal of Applied Ecology, 2019, 30(1): 95-107. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||