Chinese Journal of Applied Ecology ›› 2021, Vol. 32 ›› Issue (10): 3594-3608.doi: 10.13287/j.1001-9332.202110.041
Previous Articles Next Articles
GOU Xiao-xia1, ZHANG Tong-wen1*, YUAN Yu-jiang1, YU Shu-long1, ZHANG Rui-bo1, JIANG Sheng-xia1, GUO Yu-lin2
Received:
2021-08-12
Revised:
2021-09-26
Online:
2021-10-15
Published:
2022-04-15
Contact:
* E-mail: zhangtw@idm.cn
Supported by:
GOU Xiao-xia, ZHANG Tong-wen, YUAN Yu-jiang, YU Shu-long, ZHANG Rui-bo, JIANG Sheng-xia, GUO Yu-lin. Radial growth of dominant coniferous species and their responses to climate changes in the Altay Mountains, China[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3594-3608.
[1] IPCC. Climate Change 2021: The Physical Science Basis[EB/OL]. [2021-08-09]. https://www.ipcc.ch/ [2] 叶功富, 尤龙辉, 卢昌义, 等. 全球气候变化及森林生态系统的适应性管理. 世界林业研究, 2015, 28(1): 1-6 [Ye G-F, You L-H, Lu C-Y, et al. Global climate change and adaptive management of forest ecosystem. World Forestry Research, 2015, 28(1): 1-6] [3] Svobodová K, Langbehn T, Björklund J, et al. Increased sensitivity to drought across successional stages in natural Norway spruce (Picea abies (L.) Karst.) forests of the Calimani Mountains. Romania. Trees, 2019, 33: 1345-1359 [4] Camarero JJ, Gazol A, Sangüesa-Barreda G, et al. Coupled climate-forest growth shifts in the Chilean Patagonia are decoupled from trends in water-use efficiency. Agricultural and Forest Meteorology, 2018, 259: 222-231 [5] Song L, Zhu J, Zhang J, Wang K, et al. Divergent growth responses to warming and drying climates between native and non-native tree species in Northeast China. Trees, 2019, 33: 1143-1155 [6] Rollinson CR, Kaye MW, Canham CD. Interspecific variation in growth responses to climate and competition of five eastern tree species. Ecology, 2016, 97: 1003-1011 [7] Rubio-Cuadrado Á, Camarero JJ, Del RM, et al. Drought modifies tree competitiveness in an oak-beech temperate forest. Forest Ecology and Management, 2018, 429: 7-17 [8] 王遵娅, 丁一汇, 何金海, 等. 近50 年来中国气候变化特征的再分析. 气象学报, 2004, 62(2): 228-236 [Wang Z-Y, Ding Y-H, He J-H, et al. An updating analysis of the climate change in China in recent 50 years. Acta Meteorologica Sinica, 2004, 62(2): 228-236] [9] 姚玉璧, 肖国举, 王润元, 等. 近50年来西北半干旱区气候变化特征. 干旱区地理, 2009, 32(2): 159-165 [Yao Y-B, Xiao G-J, Wang R-Y, et al. Climatic changes of semi-arid region over the Northwest China in recent 50 a. Arid Land Geography, 2009, 32(2): 159-165] [10] 白金中, 李忠勤, 张明军, 等. 1959—2008年新疆阿尔泰山友谊峰地区冰川变化特征. 干旱区地理, 2012, 35(1): 116-124 [Bai J-Z, Li Z-Q, Zhang M-J, et al. Glacier changes in Youyi Area in the Altay Mountains of Xinjiang during 1959-2008. Arid Land Geography, 2012, 35(1): 116-124] [11] 庄晓翠, 李博渊, 张林梅, 等. 新疆阿勒泰地区冬季大到暴雪气候变化特征. 干旱区地理, 2013, 36(6): 1013-1022 [Zhuang X-C, Li B-Y, Zhang L-M, et al. Heavy snowstorm characteristics of climatic change in winter in Altay Xinjiang. Arid Land Geography, 2013, 36(6): 1013-1022] [12] 张慧, 邵雪梅, 张永. 不同海拔高度树木径向生长对气候要素响应的研究进展. 地球环境学报, 2012, 3(3): 845-854 [Zhang H, Shao X-M, Zhang Y. Research progress on the response of radial growth to climatic factors at different altitudes. Journal of Earth Environment, 2012, 3(3): 845-854] [13] 胡义成, 袁玉江, 魏文寿, 等. 用树木年轮重建阿勒泰东部6—7月平均温度序列. 中国沙漠, 2012, 32(4): 1003-1009 [Hu Y-C, Yuan Y-J, Wei W-S, et al. Tree-ring reconstruction of mean June-July Temperature during 1613-2006 in East Altay, Xinjiang of China. Journal of Desert Research, 2012, 32(4): 1003-1009] [14] 李江风, 袁玉江, 周文盛. 新疆年轮气候年轮水文研究. 北京: 气象出版社, 1989 [Li J-F, Yuan Y-J, Zhou W-S. Research dendroclimatology and dendrohydrology of Xinjiang. Beijing: Meteorological Press, 1989] [15] 尚华明, 魏文寿, 袁玉江, 等. 阿尔泰山南坡树轮宽度对气候变暖的响应. 生态学报, 2010, 30(9): 2246-2253 [Shang H-M, Wei W-S, Yuan Y-J, et al. Response of tree ring width to recent climate change, south slope of Altai Mountains. Acta Ecologica Sinica, 2010, 30(9): 2246-2253] [16] 崔宇. 阿勒泰地区树轮宽度年表对气候的响应及初夏温度重建. 硕士论文. 乌鲁木齐: 新疆大学, 2014 [Cui Y. Climate Response and Early Summer Temperature Reconstruction of Tree-ring Width in the Altay Region. Master Thesis. Urumqi: Xinjiang University, 2014] [17] 牛军强, 袁玉江, 张同文, 等. 阿尔泰山区两种树轮宽度年表气候响应特征. 沙漠与绿洲气象, 2016, 10(1): 59-67 [Niu J-Q, Yuan Y-J, Zhang T-W, et al. Characteristics of tree-ring width chronologies in Altay and their response to climate change. Desert and Oasis Meteorology, 2016, 10(1): 59-67] [18] 焦亮, 王玲玲, 李丽, 等. 阿尔泰山西伯利亚落叶松径向生长对气候变化的分异响应. 植物生态学报, 2019, 43(4): 320-330 [Jiao L, Wang L-L, Li L, et al. Divergent responses of radial growth of Larix sibirica to climate change in Altay Mountains of Xinjiang, China. Chinese Journal of Plant Ecology, 2019, 43(4): 320-330] [19] Huang JG, Tardif JC, Bergeron Y, et al. Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest. Global Change Biology, 2010, 16: 711-731 [20] Larsen C, Macdonald GM. Relations between tree-ring widths, climate, and annual area burned in the boreal forest of Alberta. Canadian Journal of Forest Research, 1995, 25: 1746-1755 [21] Lebourgeois F, Mérian P, Courdier F, et al. Instability of climate signal in tree-ring width in Mediterranean mountains: A multi-species analysis. Trees, 2012, 26: 715-729 [22] 刘敏, 毛子军, 厉悦, 等. 凉水自然保护区不同皮型红松径向生长对气候的响应. 应用生态学报, 2014, 25(9): 2511-2520 [Liu M, Mao Z-J, Li Y, et al, Climatic effects on radial growth of Korean pines with different bark forms in Liangshui Natural Reserve, Northeast China. Chinese Journal of Applied Ecology, 2014, 25(9): 2511-2520] [23] 张卫国, 肖德荣, 田昆, 等. 玉龙雪山3个针叶树种在海拔上限的径向生长及气候响应. 生态学报, 2017, 37(11): 3796-3804 [Zhang W-G, Xiao D-R, Tian K, et al. Response of radial growth of three conifer species to climate at their respective upper distributional limits on Yulong Snow Mountain. Acta Ecologica Sinica, 2017, 37(11): 3796-3804] [24] 苑丹阳, 赵慧颖, 李宗善, 等. 伊春地区红松和红皮云杉径向生长对气候变化的响应. 生态学报, 2020, 40(4): 1150-1160 [Yuan D-Y, Zhao H-Y, Li Z-S, et al. Radial growth of Pinus koraiensis and Picea koraiensis response to climate change in Yichun City, Heilongjiang Province. Acta Ecologica Sinica, 2020, 40(4): 1150-1160] [25] 吕姗娜. 东北主要树种径向生长对异常气候变化的响应规律研究. 博士论文. 哈尔滨: 东北林业大学, 2017 [Lyu N-N. Response Regimes of Radial Growth for Main Tree Species to the Abnormal Climate Change in Northeast China. PhD Thesis. Harbin: Northeast Fores-try University, 2017] [26] 张贇, 尹定财, 张卫国, 等. 普达措国家公园2个针叶树种径向生长对温度和降水的响应. 生态学报, 2018, 38(15): 5383-5392 [Zhang Y, Yin D-C, Zhang W-G, et al. Response of radial growth of two conifers to temperature and precipitation in Potatso National Park, Southwest China. Acta Ecologica Sinica, 2018, 38(15): 5383-5392] [27] 黄力平, 高亚琪, 李云, 等. 阿尔泰山中东部西伯利亚落叶松生长量及其对气候变化的响应研究. 干旱区地理, 2015, 38(6): 1169-1178 [Huang L-P, Gao Y-Q, Li Y, et al. Growth of Siberia larch in the middle east of Altay Mountains and its response to climate change. Arid Land Geography, 2015, 38(6): 1169-1178] [28] 吴祥定. 树木年轮与气候变化. 北京: 气象出版社, 1990: 64-80 [Wu X-D. Tree Rings and Climate Change. Beijing: Meteorological Press, 1990: 64-80] [29] Liu Y, Tian H, Song HM, et al. Tree ring precipitation reconstruction in the Chifeng-Weichang region, China, and East Asian summer monsoon variation since A.D. 1777. Journal of Geophysical Research, 2010, 115, doi: 10.1029/2009JD012330 [30] Jiao L, Jiang Y, Wang MC, et al. Responses to climate change in radial growth of Picea schrenkiana along elevations of the eastern Tianshan Mountains, northwest China. Dendrochronologia, 2016, 40: 117-127 [31] Jiao L, Jiang Y, Zhang WT, et al. Divergent responses to climate factors in the radial growth of Larix sibirica in the eastern Tianshan Mountains, northwest China. Trees, 2015, 29: 1673-1686 [32] WMO. Calculation of Monthly and Annual 30-Year Standard Normal. Washington DC, USA: World Meteo-rological Organization, 1989 [33] Zhang XL, Bai XP, Chang YX, et al. Increased sensitivity of Dahurian larch radial growth to summer tempe-rature with the rapid warming in Northeast China. Trees, 2016, 30: 1799-1806 [34] 喻树龙, 袁玉江, 陈峰, 等. 巩乃斯河源树木年轮密度年表特征分析. 沙漠与绿洲气象, 2010, 4(4): 6-11 [Yu S-L, Yuan Y-J, Chen F, et al. Tree-ring den-sity chronology features of Gongnaisi Riverhead Area in Western Tianshan Mountain. Desert and Oasis Meteoro-logy, 2010, 4(4): 6-11] [35] 张学文, 张家宝. 新疆气象手册. 北京: 气象出版社, 2006: 473-474 [Zhang X-W, Zhang J-B. Xinjiang Meteorological Manual. Beijing: China Meteorological Press, 2006: 473-474] [36] 郭滨德, 张远东, 王晓春. 川西高原不同坡向云、冷杉树轮对快速升温的响应差异. 应用生态学报, 2016, 27(2): 354-364 [Guo B-D, Zhang Y-D, Wang X-C. Response of Picea purpurea and Abies faxoniana tree rings at different slope aspects to rapid warming in western Sichuan, China. Chinese Journal of Applied Ecology, 2016, 27(2): 354-364] [37] 白志强, 刘华, 佘春燕, 等. 西伯利亚落叶松树干液流的动态变化. 河北农业大学学报, 2016, 39(3): 49-54 [Bai Z-Q, Liu H, She C-Y, et al. Dynamic changes of sap flow in the trunk of Larix sibirica Ledeb. Journal of Agricultural University of Hebei, 2016, 39(3): 49-54] [38] 刘华, 佘春燕, 白志强, 等. 喀纳斯保护区西伯利亚云杉树干液流动态变化. 南京林业大学学报: 自然科学版, 2016, 40(1): 65-72 [Liu H, She C-Y, Bai Z-Q, et al. Dynamic changes of trunk sap flow of Picea obovata in the Kanas National Nature Reserve. Journal of Nanjing Forestry University: Natural Science, 2016, 40(1): 65-72] [39] Liu Y, Shi JF, Shishov V, et al. Reconstruction of May-July precipitation in the north Helan Mountain, Inner Mongolia since A.D. 1726 from tree-ring late-wood widths. Chinese Science Bulletin, 2004, 49: 405-409 [40] Zhao YS , Shi JF, Shi SY, et al. Summer climate implications of tree-ring latewood width: A case study of Tsuga longibracteata in South China. Asian Geographer, 2017, 34: 1-16 [41] Zhang TW, Yuan YJ, He Q, et al. Development of tree-ring width chronologies and tree-growth response to climate in the mountains surrounding the Issyk-Kul Lake, Central Asia. Dendrochronologia, 2014, 32: 230-236 [42] Yu DP, Wang GG, Dai LM, et al. Dendroclimatic analy-sis of Betula ermanii forests at their upper limit of distribution in Changbai Mountain, Northeast China. Forest Ecology and Management, 2007, 240: 105-113 [43] 姜盛夏. 基于树轮宽度的新疆额尔齐斯河流域历史气候重建与分析. 硕士论文. 乌鲁木齐: 新疆大学, 2015 [Jiang S-X. Reconstruction and Analysis of Climate Change based on Tree-ring Width Data in the Irtysh River Basin, Xinjiang. Master Thesis. Urumqi: Xinjiang University, 2015] [44] 张生会. 植物奥秘探索. 呼和浩特: 内蒙古人民出版社, 2006: 77-78 [Zhang S-H. Exploring the Mysteries of Plants. Hohhot: Inner Mongolia People’s Press, 2006: 77-78] [45] 张林梅, 马禹, 田忠锋. 新疆阿勒泰地区1961—2010年夏季极端降水事件及其环流特征. 干旱气象, 2015, 33(6): 970-978 [Zhang L-M, Ma Y, Tian Z-F. Climatic characteristics of extreme precipitation events in summer and their circulation patterns in Aletai of Xinjiang during 1961-2010. Journal of Arid Meteorology, 2015, 33(6): 970-978] [46] 李宗善, 刘国华, 张齐兵, 等. 利用树木年轮宽度资料重建川西卧龙地区过去159年夏季温度的变化. 植物生态学报, 2010, 34(6): 628-641 [Li Z-S, Liu G-H, Zhang Q-B, et al. Tree ring reconstruction of summer temperature variations over the past 159 years in Wolong National Natural Reserve, western Sichuan, China. Chinese Journal of Plant Ecology, 2010, 34(6): 628-641] [47] Antonova GF, Stasova VV. Effect of environment factors on wood formation in Scots pine stem. Trees, 1993, 7: 214-219 [48] Simard S, Giovannelli A, Treydte K, et al. Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands. Tree Physiology, 2013, doi: 10.1093/treephys/tpt075 [49] Kozlowski TT. Carbohydrate sources and sinks in woody plants. The Botanical Review, 1992, 58: 107-222 [50] 杨昌友, 沈冠冕, 毛祖美. 新疆植物志(第一卷). 乌鲁木齐: 新疆科技卫生出版社, 1992: 58-63 [Yang C-Y, Shen G-M, Mao Z-M. Flora Xinjiangensis (Vol. 1). Urumqi: Xinjiang Science & Technology & Hygiene Press, 1992: 58-63] [51] 武鹏飞, 刘云强, 李冬梅, 等. 环境因子对沙地人工杨树林树干液流的驱动影响. 中国农业气象, 2021, 42(5): 402-411 [Wu P-F, Liu Y-Q, Li D-M, et al. Driving influence of environmental factors on the sap flow of the artificial poplar forest on sandy land. Chinese Journal of Agrometeorology, 2021, 42(5): 402-411] [52] Chuine I, Morin X, Bugmann H. Warming, photope-riods, and tree phenology. Science, 2010, 329: 277-278 [53] Hnninen H, Kramer K, Tanino K, et al. Experiments are necessary in process-based tree phenology modelling. Trends in Plant Science, 2019, 24: 199-209 [54] Huang JG, Ma Q, Rossi S, et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings National Academy of Sciences of the United States of America, 2020, 117: 20645-20652 [55] 邱琳, 郑江华, 王蕾, 等. 新疆西伯利亚落叶松固碳速率时空分异研究. 生态学报, 2018, 38(19): 6953-6963 [Qiu L, Zheng J-H, Wang L, et al. Spatiotemporal variation in the carbon sequestration rate of Larix sibirica in Xinjiang. Acta Ecologica Sinica, 2018, 38(19): 6953-6963] [56] 郎峰峰. 新疆阿尔泰山西伯利亚落叶松林分生长特征研究. 硕士论文. 北京: 北京林业大学, 2018 [Lang F-F. Study on Growth Characteristics of Larix siberian Ledb in Altai Mountain of Xinjiang. Master Thesis. Beijing: Beijing Forestry University, 2018] [57] 陈柯睿. 植物呼吸作用强度的探究. 中国高新区, 2018(5): 219 [Chen K-R. Study on the intensity of plant respiration. Science & Technology Industry Parks, 2018(5): 219] [58] 宋涛涛. 土壤增温对杉木幼苗细根呼吸的影响. 硕士论文. 福州: 福建师范大学, 2018 [Song T-T. Effects of Soil Warming on Specific Respiration Rates of Fine Roots in Chinese Fir (Cunninghamia lanceolata) Seedlings. Master Thesis. Fuzhou: Fujian Normal University, 2018] [59] 王婷, 于丹, 李江风, 等. 树木年轮宽度与气候变化关系研究进展. 植物生态学报, 2003, 27(1): 23-33 [Wang T, Yu D, Li J-F, et al. Advances in research on the relationship between climatic change and tree-ring width. Acta Phytoecologica Sinica, 2003, 27(1): 23-33] [60] Fahey TJ, Yavitt JB. An in situ approach for measuring root-associated respiration and nitrate uptake of forest trees. Plant and Soil, 2005, 272: 125-131 [61] 彭剑峰, 勾晓华, 陈发虎, 等. 天山东部西伯利亚落叶松树轮生长对气候要素的响应分析. 生态学报, 2006, 26(8): 2723-2731 [Peng J-F, Gou X-H, Chen F-H, et al. The responses of growth ring width variations of Larix sibirica Ledb to climatic change in eastern Tianshan Mountains. Acta Ecologica Sinica, 2006, 26(8): 2723-2731] [62] 张晴, 于瑞德, 郑宏伟, 等. 天山东部不同海拔西伯利亚落叶松对气候变暖的响应分析. 植物研究, 2018, 38(1): 14-25 [Zhang Q, Yu R-D, Zheng H-W, et al. Response analysis of Larix sibirica to climate warming at different elevations in the Tianshan Moun-tains. Bulletin of Botanical Research, 2018, 38(1): 14-25] [63] 霍嘉新. 石人山华山松树木年轮宽度对气候变化的响应. 硕士论文. 开封: 河南大学 [Huo J-X. Response of Tree-ring Widths of Pinus armandi to Climatic Change at Shiren Mountains. Master Thesis. Kaifeng: Henan University, 2019] [64] 盖学瑞, 于大炮, 王守乐, 等. 树轮-气候“分异问题”形成机制的研究进展. 生态学杂志, 2017, 36(11): 3273-3280 [Gai X-R, Yu D-P, Wang S-L, et al. A review of formation mechanism on the ‘divergence problem’ of tree growth-climate relationship. Chinese Journal of Ecology, 2017, 36(11): 3273-3280] [65] 于健, 陈佳佳, 孟盛旺, 等. 长白山群落交错带长白松和鱼鳞云杉径向生长对气候变暖的响应. 应用生态学报, 2021, 32(1): 46-56 [Yu J, Chen J-J, Meng S-W, et al. Response of radial growth of Pinus sylvestriformis and Picea jezoensis to climate warming in the ecotone of Changbai Mountain, Northeast China. Chinese Journal of Applied Ecology, 2021, 32(1): 46-56] [66] Du QQ, Rossi S, Lu XM, et al. Negative growth responses to temperature of sympatric species converge under warming conditions on the southeastern Tibetan Plateau. Trees, 2020, 34: 395-404 [67] 李宗善, 陈维梁, 韦景树, 等. 北京东灵山辽东栎林树木生长对气候要素的响应特征. 生态学报, 2021, 41(1): 27-37 [Li Z-S, Chen W-L, Wei J-S, et al. Tree-ring growth responses of Liaodong Oak (Quercus wutaishanica) to climate in the Beijing Dongling Mountain of China. Acta Ecologica Sinica, 2021, 41(1): 27-37] [68] 王鹏涛. 西北地区干旱灾害时空统计规律与风险管理研究. 博士论文. 西安: 陕西师范大学, 2018 [Wang P-T. Study on Spatiotemporal Statistical Law and Risk Management of Drought Disaster in Northwest China. PhD Thesis. Xi’an: Shaanxi Normal University, 2018] [69] 姚俊强, 陈静, 迪丽努尔·托列吾别克, 等. 新疆气候水文变化趋势及面临问题思考. 冰川冻土, 2020, 42(3): 1-14 [Yao J-Q, Chen J, Tuoliwubieke D, et al. Trend of climate and hydrology change in Xinjiang and its problems thinking. Journal of Glaciology and Geocryology, 2020, 42(3): 1-14] [70] 李兰海, 白磊, 姚亚楠, 等. 基于IPCC情景下新疆地区未来气候变化的预估. 资源科学, 2012, 34(4): 602-612 [Li H-L, Bai L, Yao Y-N, et al. Projection of climate change in Xinjiang under IPCC SRES. Resources Science, 2012, 34(4): 602-612] [71] 于恩涛, 孙建奇, 吕光辉, 等. 西部干旱区未来气候变化高分辨率预估. 干旱区地理, 2015, 38(3): 429-437 [Yu E-T, Sun J-Q, Lyu G-H, et al. High-resolution projection of future climate change in the northwes-tern arid regions of China. Arid Land Geography, 2015, 38(3): 429-437] [72] 王政琪, 高学杰, 童尧, 等. 新疆地区未来气候变化的区域气候模式集合预估. 大气科学, 2021, 45(2): 407-423 [Wang Z-Q, Gao X-J, Tong Y, et al. Future climate change projection over Xinjiang based on an ensemble of regional climate model simulations. Chinese Journal of Atmospheric Sciences, 2021, 45(2): 407-423] [73] Jiao L, Jiang Y, Zhang WT, et al. Assessing the stabi-lity of radial growth responses to climate change by two dominant conifer trees species in the Tianshan Mountains, Northwest China. Forest Ecology and Mana-gement, 2019, 433: 667-677 [74] 薛儒鸿, 焦亮, 刘小萍, 等. 新疆阿尔泰山不同海拔西伯利亚落叶松径向生长对气候变化的响应稳定性评价. 生态学杂志, 2021, 40(5): 1275-1284 [Xue R-H, Jiao L, Liu X-P, et al. Evaluation of the stability of the radial growth of Larix sibirica at different altitudes in response to climate change in Altai Mountain, Xinjiang. Chinese Journal of Ecology, 2021, 40(5): 1275-1284] [75] Zhou P, Huang JG, Liang HX, et al. Radial growth of Larix sibirica was more sensitive to climate at low than high altitudes in the Altai Mountains, China. Agricultu-ral and Forest Meteorology, 2021, 304-305, doi: 10.1016/j.agrformet.2021.108392 |
[1] | XIE Pingping, ZHANG Boyi, DONG Yibo, LYU Pengcheng, DU Mingchao, ZHANG Xianliang. Differences in ecological resilience of radial growth between Larix principis-rupprechtii and Picea meyeri after drought [J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1779-1786. |
[2] | WANG Heng, WANG Xiao-xue, JIA Jianheng, ZHANG Zihang, GUO Mingming. Responses of radial growth of Larix principis-rupprechtii to abrupt warming [J]. Chinese Journal of Applied Ecology, 2023, 34(10): 2629-2636. |
[3] | GAO Xin, YANG Li-xin, CHEN Zhen-ju. Convolutional neural network tree species identification based on tree-ring radial section image features [J]. Chinese Journal of Applied Ecology, 2023, 34(1): 47-57. |
[4] | ZHANG Hui, FU Pei-li, LIN You-xing, GE Sang, YANG Jian-qiang, GE-RONG Qu-zha, FAN Ze-xin. Intra-annual radial growth of Abies georgei and Larix potaninii and its responses to environmental factors in the Baima Snow Mountain, Northwest Yunnan, China. [J]. Chinese Journal of Applied Ecology, 2022, 33(11): 2881-2888. |
[5] | JIA Han-sen, GAO Jun, ZHANG Jin-song, MENG Ping, SUN Shou-jia. Growth response to climatic factors and drought events in Quercus variabilis trees of different diameter classes at south aspect of Taihang Mountains, China [J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2857-2865. |
[6] | HAN Yan-gang, GAI Xue-rui, QIU Si-yu, ZHANG Yue, WANG Shou-le, ZHOU Li, YU Da-pao. Spatial and temporal variations of the responses of radial growth of Larix gmelinii to climate in the Daxing'anling Mountains of Northeast China [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3397-3404. |
[7] | GUO Xue-mei, WANG Zhao-peng, ZHANG Nan, ZHANG Dong-you. Responses of radial growth of Pinus sylvestris var. mongolica and Larix gmelinii to climate change [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3405-3414. |
[8] | YANG Jing-wen, ZHANG Qiu-liang, SONG Wen-qi, ZHANG Xu, LI Zong-shan, ZHANG Yuan-dong, WANG Xiao-chun. Response differences of radial growth of Larix gmelinii and Pinus sylvestris var. mongolica to climate change in Daxing'an Mountains, Northeast China [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3415-3427. |
[9] | BAO Guang, LIU Zhi-ye, LIU Na, WU Mai-li. Simulation analysis of the radial growth characteristics of Pinus sylvestris var. mongolica in Hulunbuir Sandy Land by Vaganov-Shashkin Model [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3448-3458. |
[10] | ZHAO Ying, CAI Li-xin, JIN Yu-ting, LI Jun-xia, CUI Di, CHEN Zhen-ju. Warming-drying climate intensifies the restriction of moisture on radial growth of Pinus tabuli-formis plantation in semi-arid area of Northeast China [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3459-3467. |
[11] | MAO Yi-xin, ZHANG Hui-dong, WANG Rui-zhao, YAN Ting-wu, WEI Wen-jun, YUN Li-li, PAN Wen-li, YOU Wen-zhong. Responses of radial growth of Quercus mongolica to stand density and climatic factors in a mountainous area of eastern Liaoning Province, China [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3477-3486. |
[12] | GAO Jia-ni, YANG Bao, QIN Chun. Response of intra-annual stem radial growth to drought events: A case study of Pinus tabuliformis in the Helan Mountains, China [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3505-3511. |
[13] | LI Jing-ru, PENG Jian-feng, YANG Liu, CUI Jia-yue, LI Xuan, PENG Meng. Responses of radial growth of two coniferous species to climate factors in western Sichuan Plateau, China [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3512-3520. |
[14] | MENG Sheng-wang, YANG Feng-ting, DAI Xiao-qin, WANG Hui-min. Radial growth dynamics of Chinese fir and its response to seasonal drought [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3521-3530. |
[15] | CAO Xin-guang, HU Hong-bing, LI Ying-jun, DONG Zhi-peng, LU Xiao-rong, BAI Mao-wei, ZHENG Zhuang-peng, FANG Ke-yan. Differences in the ecological resilience of planted and natural Pinus massoniana and Cunninghamia lanceolata forests in response to drought in subtropical China [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3531-3538. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 137
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 364
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||