Chinese Journal of Applied Ecology ›› 2024, Vol. 35 ›› Issue (2): 523-532.doi: 10.13287/j.1001-9332.202402.029
• Reviews • Previous Articles Next Articles
WANG Jiajia1, MA Xiangjuan1, ZHENG Heng2, YU Shujing1, XU Hai3, FENG Huajun1*
Received:
2023-07-05
Revised:
2023-11-14
Online:
2024-02-18
Published:
2024-08-18
WANG Jiajia, MA Xiangjuan, ZHENG Heng, YU Shujing, XU Hai, FENG Huajun. Review on mechanism and remediation strategies of dissolved oxygen abnormal in surface water[J]. Chinese Journal of Applied Ecology, 2024, 35(2): 523-532.
[1] Diaz RJ, Rosenberg R. Spreading dead zones and consequences for marine ecosystems. Science, 2008, 321: 926-929 [2] Gilbert D. Oceans lose oxygen. Nature, 2017, 542: 303-304 [3] Jane SF, Hansen GJA, Kraemer BM, et al. Widespread deoxygenation of temperate lakes. Nature, 2021, 594: 66-70 [4] Stramma L, Johnson GC, Sprintall J, et al. Expanding oxygen-minimum zones in the tropical oceans. Science, 2008, 320: 655-658 [5] Wright JJ, Konwar KM, Hallam SJ. Microbial ecology of expanding oxygen minimum zones. Nature Reviews Microbiology, 2012, 10: 381-394 [6] Meyer-Gutbrod E, Kui L, Miller R, et al. Moving on up: Vertical distribution shifts in rocky reef fish species during climate-driven decline in dissolved oxygen from 1995 to 2009. Global Change Biology, 2021, 27: 6280-6293 [7] 王话翔. 上海城市地表水溶解氧时空分布特征及影响因素探讨. 硕士论文. 上海: 华东师范大学, 2020 [8] Drew MC. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 223-250 [9] Chen CC, Gong GC, Shiah FK. Hypoxia in the East China Sea: One of the largest coastal low-oxygen areas in the world. Marine Environmental Research, 2007, 64: 399-408 [10] Liu SW, He GJ, Fang HW, et al. Effects of dissolved oxygen on the decomposers and decomposition of plant litter in lake ecosystem. Journal of Cleaner Production, 2022, 372: 133837 [11] Qin BQ, Xu P, Wu Q, et al. Environmental issues of Lake Taihu, China. Hydrobiologia, 2007, 581: 3-14 [12] Wei Z, Yu YX, Yi YJ. Spatial distribution of nutrient loads and thresholds in large shallow lakes: The case of Chaohu Lake, China. Journal of Hydrology, 2022, 613: 128466 [13] Xing KX, Guo HC, Sun YF, et al. Assessment of the spatial-temporal eutrophic character in the Lake Dianchi. Journal of Geographical Sciences, 2005, 15: 37-43 [14] Zhu YZ, Jing Z, Ying W, et al. Hypoxia off the Changjiang (Yangtze River) Estuary: Oxygen depletion and organic matter decomposition. Marine Chemistry, 2011, 125: 108-116 [15] Qin BQ, Zhu GW, Gao G, et al. A drinking water crisis in Lake Taihu, China: Linkage to climatic variability and lake management. Environmental Management, 2010, 45: 105-112 [16] 张晓峰, 孔繁翔, 曹焕生, 等. 太湖梅梁湾水华蓝藻复苏过程的研究. 应用生态学报, 2005, 16(7): 1346-1350 [17] 周名江, 颜天, 邹景忠. 长江口邻近海域赤潮发生区基本特征初探. 应用生态学报, 2003, 14(7): 1031-1038 [18] 陆桂华, 马倩. 太湖水域“湖泛”及其成因研究. 水科学进展, 2009, 20(3): 438-442 [19] Jacob K. Limnology: Inlandwater Recosytems. Upper Saddle River, NJ, USA: Prentice Hall, 2002 [20] Kintisch E. Earth’s lakes are warming faster than its air. Science, 2015, 350: 1449 [21] 张运林. 气候变暖对湖泊热力及溶解氧分层影响研究进展. 水科学进展, 2015, 26(1): 130-139 [22] O'Reilly CM, Alin SR, Plisnier PD, et al. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature, 2003, 424: 766-768 [23] Stocker TF, Qin D, Plattner GK, et al. Climate Change 2013: The Physical Science Basis// IPCC. Working Group Ⅰ Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013: 1535 [24] 朱立平, 乔宝晋, 杨瑞敏, 等. 青藏高原湖泊水量与水质变化的新认知. 自然杂志, 2017, 39(3): 166-172 [25] Ladwig R, Hanson PC, Dugan HA, et al. Lake thermal structure drives interannual variability in summer anoxia dynamics in a eutrophic lake over 37 years. Hydrology and Earth System Sciences, 2021, 25: 1009-1032 [26] Rabalais NN, Turner RE, Díaz RJ, et al. Global change and eutrophication of coastal waters. ICES Journal of Marine Science, 2009, 66: 1528-1537 [27] Breitburg DL, Hondorp DW, Davias LA, et al. Hypo-xia, nitrogen, and fisheries: integrating effects across local and global landscapes. Annual Review of Marine Science, 2009, 1: 329-349 [28] Wang BB, Ma YW, Su Z, et al. Quantifying the evaporation amounts of 75 high-elevation large dimictic lakes on the Tibetan Plateau. Science Advances, 2020, 6: 8558 [29] Liu C, Zhu L, Wang J, et al. In-situ water quality investigation of the lakes on the Tibetan Plateau. Science Bulletin, 2021, 66: 1727-1730 [30] 匡翠萍. 长江口盐水入侵三维数值模拟河海大学学报. 河海大学学报, 1997, 25(4): 56-62 [31] 雒文生, 李莉红, 贺涛. 水体大气复氧理论和复氧系数研究进展与展望. 水利学报, 2003, 34(11): 64-70 [32] 孙远军, 卢士强, 邵一平, 等. 城市河流大气复氧试验研究. 2019中国环境科学学会科学技术年会,西安, 2019: 953-959 [33] Wallace TA, Ganf GG, Brookes JD. A comparison of phosphorus and DOC leachates from different types of leaf litter in an urban environment. Freshwater Biology, 2008, 53: 1902-1913 [34] 罗丹. 闽江下游水体溶解氧变化及其成因初探. 海峡科学, 2015, 5(6): 64-68 [35] Woolway RI, Sharma S, Weyhenmeyer GA, et al. Phenological shifts in lake stratification under climate change. Nature Communications, 2021, 12: 2318 [36] Deng JM, Paerl HW, Qin BQ, et al. Climatically-modulated decline in wind speed may strongly affect eutrophication in shallow lakes. Science of the Total Environment, 2018, 645: 1361-1370 [37] 裴洋. 典型村镇水体污染特征甄别与安全评价研究. 硕士论文, 长沙: 湖南大学, 2014 [38] Yamada K, Yamamoto H, Hichiri S, et al. First observation of incomplete vertical circulation in Lake Biwa. Limnology, 2021, 22: 179-185 [39] Schmidtko S, Stramma L, Visbeck M. Decline in global oceanic oxygen content during the past five decades. Nature, 2017, 542: 335-339 [40] Wilhelm S, Adrian R. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshwater Biology, 2007, 53: 226-237 [41] Kim HB, Kim JG, Park JK, et al. Control of arsenic release from paddy soils using alginate encapsulated calcium peroxide. Journal of Hazardous Materials, 2022, 432: 128751 [42] Bella DA. Dissolved oxygen variations in stratified lakes. Journal of the Sanitary Engineering Division, 1970, 96: 1129-1146 [43] Zhang YL, Wu ZX, Liu ML, et al. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China). Water Research, 2015, 75: 249-258 [44] Tilman D. Resource competition between plankton algae: An experimental and theoretical approach. Eco-logy, 1977, 58: 338-348 [45] 饶胡敏, 黄旺银. 影响水体中溶解氧含量因素的探讨. 盐科学与化工, 2017, 46(3): 40-43 [46] 彭俊杰, 李传红, 黄细花. 城市湖泊富营养化成因和特征. 生态科学, 2004, 23(4): 370-373 [47] 解磊. 温度、pH值、透明度对山中湖泊水库溶解氧垂向分布影响研究. 科技视界, 2014(32): 136 [48] 王朝霞. 河流水体富营养化与溶解氧的昼夜变化特点研究. 环境保护与循环经济, 2020, 40(10): 60-62 [49] 卢全章. 环境和指示生物水域分册. 北京: 中国环境科学出版社, 1987. [50] 张军毅, 黄君, 严飞, 等. 梅梁湖水体溶解氧特征及其与pH的关系分析. 复旦学报: 自然科学版, 2009, 48(5): 623-627 [51] Liu HQ, Hu Z, Zhang J, et al. Optimizations on supply and distribution of dissolved oxygen in constructed wetlands: A review. Bioresource Technology, 2016, 214: 797-805 [52] 彭青林, 敖洁, 曾经. 水生植物塘中的溶解氧变化及对污水处理研究. 长沙电力学院学报: 自然科学版, 2004, 19(1): 79-81 [53] Steeby JA, Hargreaves JA, Tucker CS, et al. Accumulation, organic carbon and dry matter concentration of sediment in commercial channel catfish ponds. Aquacultural Engineering, 2004, 30: 115-126 [54] Teichert-Coddington D, Green B. Comparison of two techniques for determining community respiration in tropical fish ponds. Aquaculture, 1993, 114: 41-50 [55] 董双林, 堵南山, 赖伟. 日本沼虾生理生态学研究. Ⅰ. 温度和体重对其代谢的影响. 海洋与湖沼, 1994, 25(3): 233-237 [56] 许秋瑾, 金相灿, 王兴民, 等. 氨氮与镉单一和复合作用对沉水植物穗花狐尾藻和轮叶黑藻光合能力的影响. 环境科学, 2006, 27(10): 1974-1978 [57] 周莹. 水生生物对水体溶解氧日变化规律影响. 硕士论文. 沈阳: 沈阳师范大学, 2016 [58] Kalbitz K, Solinger S, Park JH, et al. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Science, 2000, 165: 277-304 [59] Steinsberger T, Schwefel R, Wüest A, et al. Hypolimnetic oxygen depletion rates in deep lakes: Effects of trophic state and organic matter accumulation. Limnology and Oceanography, 2020, 65: 3128-3138 [60] Santa KD, Vinatea L. Evaluation of respiration rates and mechanical aeration requirements in semi-intensive shrimp Litopenaeus vannamei culture ponds. Aquacultural Engineering, 2007, 36: 73-80 [61] 张宁红, 黎刚, 郁建桥, 等. 太湖蓝藻水华暴发主要特征初析. 中国环境监测, 2009, 25(1): 71-74 [62] Zhang YL, Liu XH, Qin BQ, et al. Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: Implications for lake ecological restoration. Scientific Reports, 2016, 6: 23867 [63] Kagalou I, Papastergiadou E, Leonardos I. Long term changes in the eutrophication process in a shallow Mediterranean lake ecosystem of W. Greece: Response after the reduction of external load. Journal of Environmental Management, 2008, 87: 497-506 [64] Ayele HS, Atlabachew M. Review of characterization, factors, impacts, and solutions of lake eutrophication: Lesson for Lake Tana, Ethiopia. Environmental Science and Pollution Research, 2021, 28: 14233-14252 [65] Zhang WQ, Rong N, Jin X, et al. Dissolved oxygen variation in the North China Plain river network region over 2011-2020 and the influencing factors. Chemosphere, 2022, 287: 132354 [66] Yu CQ, Huang X, Chen H, et al. Managing nitrogen to restore water quality in China. Nature, 2019, 567: 516-520 [67] Liu Y, Jiang QS, Sun YX, et al. Decline in nitrogen concentrations of eutrophic Lake Dianchi associated with policy interventions during 2002-2018. Environmental Pollution, 2021, 288: 117826 [68] 高雅玉, 张新民, 田晋华, 等. 双塔水库水质对人类活动的响应分析. 水文, 2013, 33(2): 70-74 [69] Zhong F, Wu J, Dai YR, et al. Responses of water quality and phytoplankton assemblages to remediation projects in two hypereutrophic tributaries of Chaohu Lake. Journal of Environmental Management, 2019, 248: 109276 [70] Jamwal P. Remediation of contaminated urban streams: A decentralized ecological wastewater treatment app-roach// Shantanu B, ed. Energy, Environment, and Sustainability. Singapore: Springer, 2018: 29-41 [71] 朱颖. 基于钛改性白云石的磷吸附材料及原位覆盖控制底泥内源磷污染的研究. 硕士论文. 上海: 上海交通大学, 2020 [72] 张戈. EPSB工程菌固化颗粒底泥削减与水污染治理技术// 中国环境保护产业协会水污染治理委员会,环境保护部对外合作中心. “十三五”水污染治理实用技术. 北京: 化学工业出版社, 2017: 272-275 [73] 丁瑞睿, 郭匿春, 马友华. 巢湖双桥河底泥疏浚过程中浮游植物功能群分类研究. 生态学报, 2020, 40 (7): 2427-2438 [74] 包闯. 扬州市城市河道综合治理施工关键技术研究. 中国水运, 2022(7): 89-92 [75] 范成新, 张路, 王建军, 等. 湖泊底泥疏浚对内源释放影响的过程与机理. 科学通报,2004, 49(15): 1523-1528 [76] 姚天启, 严晗璐, 廖雪珂, 等. 引调水河道氮的迁移转化及微生物群落结构特征——以望虞河为例. 环境科学学报, 2022, 42(1): 195-204 [77] 穆守胜, 柳杨, 乌景秀, 等. 常州市主城区畅流活水方案模拟比选及现场试验研究. 水利水运工程学报, 2022(5): 148-156 [78] Williams RJ, White C, Harrow ML, et al. Temporal and small-scale spatial variations of dissolved oxygen in the Rivers Thames, Pang and Kennet, UK. Science of the Total Environment, 2000, 251-252: 497-510 [79] 刘延恺, 陆苏, 孟振全. 河道曝气法——适合我国国情的环境污水处理工艺. 环境污染与防治, 1994, 16(1): 22-25 [80] 张羽珩, 李波, 宋高飞, 等. 过氧化钙对武汉东湖浮游植物群落及水环境的影响. 水生态学杂志, 2022, 43(6): 35-42 [81] Kim HB, Kim JG, Park J, et al. Control of arsenic release from paddy soils using alginate encapsulated calcium peroxide. Journal of Hazardous Materials, 2022, 432: 128751 [82] Spears BM, Mackay EB, Yasseri S, et al. A meta-analy-sis of water quality and aquatic macrophyte responses in 18 lakes treated with lanthanum modified bentonite (Phoslock (R)). Water Research, 2016, 97: 111-121 [83] Tang X, Zhang XL, Cao T, et al. Reconstructing clear water state and submersed vegetation on behalf of repea-ted flocculation with modified soil in an in situ mesocosm experiment in Lake Taihu. Science of the Total Environment, 2018, 625: 1433-1445 [84] 李亚娟, 杜彦良, 毕二平, 等. 妫水河湿地植物作用及调水水质响应模拟. 环境科学, 2020, 41(9): 4095-4104 [85] Ni M, Liang X, Hou LJ, et al. Submerged macrophytes regulate diurnal nitrous oxide emissions from a shallow eutrophic lake: A case study of Lake Wuliangsuhai in the temperate arid region of China. Science of the Total Environment, 2022, 811: 152451 [86] Liu Y, Wang YL, Sheng H, et al. Quantitative evaluation of lake eutrophication responses under alternative water diversion scenarios: A water quality modeling based statistical analysis approach. Science of the Total Environment, 2014, 468-469: 219-227 [87] Zhang SY, Liu AF, Ma JM, et al. Changes in physicochemical and biological factors during regime shifts in a restoration demonstration of macrophytes in a small hypereutrophic Chinese lake. Ecological Engineering, 2010, 36: 1611-1619 [88] Genkai-Kato M. Macrophyte refuges, prey behaviour and trophic interactions: Consequences for lake water clarity. Ecology Letters, 2007, 10: 105-114 [89] 沙昊雷, 章黎笋, 陈金媛. 常州市白荡浜黑臭水体生态治理与景观修复. 中国给水排水, 2012, 28(14): 74-78 [90] 高光, 张运林, 邵克强. 浅水湖泊生态修复与草型生态系统重构实践——以太湖蠡湖为例. 科学, 2021, 73(3): 9-12 [91] 张绍浩, 邬红娟, 崔博, 等. 利用三角帆蚌控制水华的初步研究. 水生生物学报, 2007, 31(5): 760-762 [92] Oruganti RK, Katam K, Show PL, et al. A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal. Bioengineered, 2022, 13: 10412 - 10453 [93] Saravanan A, Kumar PS, Varjani S, et al. A review on algal-bacterial symbiotic system for effective treatment of wastewater. Chemosphere, 2021, 271: 12954 |
[1] | CAI Lulu, SUN Shoujia, SHI Guangyao, DU Lingtong, NI Xilu, ZHANG Jinsong, MENG Ping. Relationship between negative air ion and PM2.5 in Quercus variabilis under natural conditions [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 347-353. |
[2] | GUO Yuying, LIU Longchang, MENG Wei, WANG Xinye, YAO Hairui, LI Longji. Blooming characteristics and breeding system of an invasive plant Gaura parviflora [J]. Chinese Journal of Applied Ecology, 2023, 34(6): 1517-1524. |
[3] | LIU Yuanhao, DU Xulong, HUANG Jinxue, XIONG Decheng. Effects of warming on fine root lifespan of forests: A review [J]. Chinese Journal of Applied Ecology, 2023, 34(6): 1693-1702. |
[4] | LI Chenglong, ZHOU Guangsheng, ZHOU Mengzi, ZHOU Li, LIU Jie. Net ecosystem productivity of Panjin Phragmites australis wetland during 1971 to 2020 and its impact factors [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1331-1340. |
[5] | WANG Qingyun, ZHOU Dingyang, AN Pingli, JIANG Guanghui. Impacts of nature reserve policy on regional ecological environment quality: A case study of Sanjiangyuan region [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1349-1359. |
[6] | ZHAO Zikun, TIAN Yuansheng, WENG Xuexian, LI Huanwei, SUN Wenyi. Temporal and spatial variation characteristics of surface water area in the Yellow River Basin from 1986 to 2021. [J]. Chinese Journal of Applied Ecology, 2023, 34(3): 761-769. |
[7] | ZHU Yongxing, WANG Yanhong, YIN Junliang, PENG Xiangyan, GUO Changquan, ZENG Jianjun, LIU Xuli, LIU Yiqing. Research status of ginger insecticidal components in botanical insecticides. [J]. Chinese Journal of Applied Ecology, 2023, 34(3): 825-834. |
[8] | TAO Xin, XIA Shibin, LIU Qiumei, LI Dejun, HE Xunyang. Research progress on microbial control of sugarcane smut. [J]. Chinese Journal of Applied Ecology, 2023, 34(3): 846-852. |
[9] | MENG Qingmei, FU Zhiyong, DENG Yusong, CHEN Hongsong. Spatial variations and the key driving factors of soil losses on dolomite slopes [J]. Chinese Journal of Applied Ecology, 2023, 34(2): 377-386. |
[10] | HUI Kaishan, WU Zhaohan, ZHANG Yongli. Effects of phosphorus application rates on photosynthetic and senescence characteristics and yield of diffe-rent stems and tillers of wheat under water-saving supplementary irrigation [J]. Chinese Journal of Applied Ecology, 2023, 34(2): 451-462. |
[11] | WANG Hongxue, WU Wei, WANG Qikun, YANG Xueqi, YIN Xuwang. Impact of land use pattern on water quality under different riparian buffer zone scales in Gaya River Basin, Northeast China [J]. Chinese Journal of Applied Ecology, 2023, 34(12): 3203-3213. |
[12] | WANG Jing, FU Bingzhe, LI Shuxia, WANG Xing, SONG Wenxue, YE Yunong, HU Pengfei, WANG Tongrui. Effects of exogenous melatonin on growth and physiological characteristics of Agropyron mongolicum seedlings under drought stress [J]. Chinese Journal of Applied Ecology, 2023, 34(11): 2947-2957. |
[13] | HAN Chengquan, WANG Hui, WANG Jianwei, LI Fukuan, WANG Zhennan, HU Xiyi, YANG Yan, LYU Shenjin. Research progress on the interference effects of plasticizers on maternal behavior and its potential mechanisms. [J]. Chinese Journal of Applied Ecology, 2023, 34(11): 3157-3168. |
[14] | ZHANG Zehao, ZHANG Jingxiao, YU Miao, GAO Yunni, DONG Jing, SONG Dongying, LI Xuejun. Temporal-spatial distribution of functional feeding groups of macroinvertebrate and biological evaluation of water quality in Xinyang section of the Huaihe River main stream [J]. Chinese Journal of Applied Ecology, 2023, 34(10): 2820-2826. |
[15] | PAN Lan, ZHENG Xiaona, LUO Shuang, MAO Huijun, MENG Qinglin, CHEN Jinrui. Review on building energy saving and outdoor cooling effect of vertical greenery systems [J]. Chinese Journal of Applied Ecology, 2023, 34(10): 2871-2880. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 60
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 321
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||