[1] Marcos F, Catherine P, Jordi C, et al. Bryophyte C:N:P stoichiometry, biogeochemical niches and elementome plasticity driven by environment and coexistence. Ecology Letters, 2021, 24: 13752 [2] Müller M, Oelmann Y, Schickhoff U, et al. Himalayan tree line soil and foliar C:N:P stoichiometry indicate nutrient shortage with elevation. Geoderma, 2017, 291: 21-32 [3] 徐紫萱, 周长芳, 潘璠, 等. 城市湖泊富营养化对水生植物叶片C、N、P化学计量特征的影响. 长江流域资源与环境, 2020, 29(6): 1322-1332 [4] 刘旻霞. 甘南高寒草甸植物元素含量与土壤因子对坡向梯度的响应. 生态学报, 2017, 37(24): 8275-8284 [5] 饶丽仙, 沈艳, 聂明鹤, 等. 宁夏典型草原不同退耕年限草地植物-土壤生态化学计量特征. 草业学报, 2017, 26(4): 43-52 [6] Wassen MJ, Venterink HO, Swart EOAM. Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems. Journal of Vegetation Science, 1995, 6: 5-16 [7] Wang DD, Qin W, Xu HC, et al. Assessing the response of water use efficiency to climate variability and land-use changes in the mountainous area of North China. Forest Ecology and Management, 2023, 530: 120780 [8] 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 等. 2000—2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析. 植物生态学报, 2019, 43(6): 490-500 [9] O'Leary MH. Carbon isotopes in photosynthesis fractionation techniques may reveal new aspects of carbon dynamics in plants. BioScience, 1988, 38: 328-336 [10] 殷树鹏, 张成君, 郭方琴, 等. 植物碳同位素组成的环境影响因素及在水分利用效率中的应用. 同位素, 2008(1): 46-53 [11] 杨树烨, 赵西宁, 高晓东, 等. 基于δ13C值的黄土高原生态林和经济林水分利用效率差异及对环境响应分析. 水土保持学报, 2022, 36(4): 247-252 [12] Yan WM, Zhong YQW, Zheng SX, et al. Linking plant leaf nutrients/stoichiometry to water use efficiency on the Loess Plateau in China. Ecological Engineering, 2016, 87: 124-131 [13] 田金园, 袁凤辉, 关德新, 等. 长白山阔叶红松林5种主要树种水分利用效率与叶片养分特征. 应用生态学报, 2022, 33(2): 304-310 [14] Li T, Zhang ZH, Sun JK, et al. Seasonal variation cha-racteristics of C, N, and P stoichiometry and water use efficiency of Messerschmidia sibirica and its relationship with soil nutrients. Frontiers in Ecology and Evolution, 2022, 10: 948682 [15] Lin YT, Lai Y, Tang SB, et al. Climatic and edaphic variables determine leaf C, N, P stoichiometry of deci-duous Quercus species. Plant and Soil, 2022, 474: 383-394 [16] 陈云, 李玉强, 王旭洋, 等. 中国典型生态脆弱区生态化学计量学研究进展. 生态学报, 2021, 41(10): 4213-4225 [17] Hou EQ, Luo YQ, Kuang YW, et al. Global meta-ana-lysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nature Communications, 2020, 11: 637 [18] Gao YJ, Zeng FJ. Patterns of carbon, nitrogen, and phosphorus stoichiometry of three life-form desert plants and responses to soil and microbial biomass factors in a hyper-arid desert ecosystem. Environmental Science and Pollution Research, 2023, 30: 43962-43974 [19] 王佳璇, 寇再兴. 毛乌素沙地南缘不同植被类型土壤生态化学计量特征. 农业与技术, 2023, 43(14): 105-108 [20] 刘媖心. 中国沙漠植物志. 第二卷. 北京: 科学出版社, 1987 [21] 林培岳, 张梓琳. 沙冬青在生态修复领域应用前景分析. 防护林科技, 2023(2): 78-82 [22] 朱雅娟, 贾志清, 卢琦, 等. 乌兰布和沙漠5种灌木的水分利用策略. 林业科学, 2010, 46(4): 15-21 [23] 王文晓, 李小伟, 黄文广, 等. 蒙古沙冬青根际土壤细菌群落组成及多样性与生态因子相关性研究. 生态学报, 2020, 40(23): 8660-8671 [24] 刘万弟, 李小伟. 宁夏针茅属植物叶片碳稳定同位素特征及其影响因素. 草地学报, 2022, 30(8): 2058-2065 [25] Lan Z, Zhang S, Xie L, et al. Effects of Artemisia ordosica on fine-scale spatial distribution of soil C, N and P and physical-chemical properties in the Mu Us Desert, China. Journal of Soils and Sediments, 2021, 22: 172-184 [26] Reich PB, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Procee-dings of the National Academy of Sciences of the United States of America, 2004, 101: 11001-6 [27] Han WX, Fang JY, Guo DL, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 2005, 168: 377-385 [28] 何茂松, 罗艳, 彭庆文, 等. 新疆67种荒漠植物叶碳氮磷计量特征及其与气候的关系. 应用生态学报, 2019, 30(7): 2171-2180 [29] 宁志英, 李玉霖, 杨红玲, 等. 科尔沁沙地优势固沙灌木叶片氮磷化学计量内稳性. 植物生态学报, 2019, 43(1): 46-54 [30] 张文瑾. 毛乌素沙地典型植物叶片生态化学计量特征. 硕士论文. 北京: 北京林业大学, 2016 [31] 魏亚娟, 汪季, 党晓宏, 等. 白刺灌丛沙堆演化过程中叶片C、N、P、K含量及其生态化学计量的变化特征. 中南林业科技大学学报, 2021, 41(10): 102-110, 139 [32] 王彬. 闽西北13种树种叶片功能性状分析. 硕士论文. 福州: 福建师范大学, 2020 [33] 王玉琴, 宋梅玲, 鲍根生, 等. 防除狼毒对狼毒斑块植物-土壤C、N、P化学计量特征的影响. 生态学报, 2021, 41(15): 6280-6288 [34] Rien A. Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology, 1996, 84: 597-608 [35] 汪涛, 杨元合, 马文红. 中国土壤磷库的大小、分布及其影响因素. 北京大学学报: 自然科学版, 2008, 44(6): 945-952 [36] 耿燕, 吴漪, 贺金生. 内蒙古草地叶片磷含量与土壤有效磷的关系. 植物生态学报, 2011, 35(1): 1-8 [37] 任宾宾. 呼伦贝尔樟子松δ13C及生态化学计量与环境因子关系研究. 博士论文. 昆明: 云南师范大学, 2021 [38] 高三平, 李俊祥, 徐明策. 等. 天童常绿阔叶林不同演替阶段常见种叶片N、P化学计量学特征. 生态学报, 2007, 27(3): 947-952 [39] Rao IM, Terry N. Leaf phosphate status, photosynthesis, and carbon partitioning in sugar beet: IV. Changes with time following increased supply of phosphate to low-phosphate plants. Plant Physiology, 1995, 107: 1313-1321 [40] 闫伟民. 黄土区植物生长与土壤水分协同关系及土壤水分有效性评价. 博士论文. 西安: 西北农林科技大学, 2017 [41] 侯晓巍, 文妙霞, 王海, 等. 青海省祁连圆柏针叶和土壤C、N、P生态化学计量及其影响因子. 西北农林科技大学学报: 自然科学版, 2023, 51(2): 53-63 [42] 宾振钧, 张仁懿, 张文鹏, 等. 氮磷硅添加对青藏高原高寒草甸垂穗披碱草叶片碳氮磷的影响. 生态学报, 2015, 35(14): 4699-4706 [43] He MZ, Song X, Tian FP, et al. Divergent variations in concentrations of chemical elements among shrub organs in a temperate desert. Scientific Reports, 2016, 6: 20124 [44] Elser JJ, Fagan WF, Denno RF, et al. Nutritional constraints in terrestrial and freshwater food webs. Nature, 2000, 408: 578-580 |