
Chinese Journal of Applied Ecology ›› 2026, Vol. 37 ›› Issue (1): 1-14.doi: 10.13287/j.1001-9332.202601.031
• Viewpoint • Previous Articles Next Articles
CHEN Hongsong1,2*, ZHANG Jun1,2, LIAN Jinjiao1,2, LUO Zidong1,2, WANG Fa1,2, LIU Wenna1,2, LIU Yeye1,2
Received:2025-05-28
Revised:2025-11-13
Published:2026-07-18
CHEN Hongsong, ZHANG Jun, LIAN Jinjiao, LUO Zidong, WANG Fa, LIU Wenna, LIU Yeye. Interactions between hydrological processes and vegetation in Karst critical zone, Southwest China[J]. Chinese Journal of Applied Ecology, 2026, 37(1): 1-14.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202601.031
| [1] 陈喜, 张志才. 喀斯特地区地球关键带科学与生态水文学发展综述. 中国岩溶, 2022, 41(3): 356-364 [2] McCormick EL, Dralle DN, Hahm WJ, et al. Widespread woody plant use of water stored in bedrock. Nature, 2021, 597: 225-229 [3] Karlstrom L, Klema N, Grant GE, et al. State shifts in the deep critical zone drive landscape evolution in volcanic terrains. Proceedings of the National Academy of Sciences of the United States of America, 2025, 122: e2415155122 [4] Brooks PD, Chorover J, Fan Y, et al. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics. Water Resources Research, 2015, 51: 6973-6987 [5] Zhou Y, Gu BJ. The impacts of human activities on Earth critical zone. Earth Critical Zone, 2024, 1: 100004 [6] 骆占斌, 樊军, 邵明安. 地球关键带基岩风化层生态水文研究进展. 科学通报, 2022, 67(27): 3311-3323 [7] Rempe DM, Dietrich WE. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115: 2664-2669 [8] Covington MD, Martin JB, Toran LE, et al. Carbonates in the critical zone. Earth’s Future, 2023, 11: e2022EF002765 [9] Ding YL, Nie YP, Chen HS, et al. Water uptake depth is coordinated with leaf water potential, water-use efficiency and drought vulnerability in karst vegetation. New Phytologist, 2021, 229: 1339-1353 [10] 白晓永, 张思蕊, 冉晨, 等. 我国西南喀斯特生态修复的十大问题与对策. 中国科学院院刊, 2023, 38(12): 1903-1914 [11] 熊康宁, 赵榕, 张珍珍, 等. 喀斯特石漠化治理生态产品价值实现及其对乡村振兴的启示. 生态学报, 2024, 44(2): 488-496 [12] 王克林, 岳跃民, 陈洪松, 等. 科技扶贫与生态系统服务提升融合的机制与实现途径. 中国科学院院刊, 2020, 35(10): 1264-1272 [13] 张君, 陈洪松, 聂云鹏, 等. 西南喀斯特关键带结构及其水文过程研究进展. 应用生态学报, 2024, 35(4): 985-996 [14] 岳跃民, 王克林, 罗为群, 等. 人地耦合视角下喀斯特石漠化地区生态系统服务提升. 生态学报, 2024, 44(18): 8159-8164 [15] Behzad HM, Nie YP. Groundwater flooding risks overlooked. Science, 2024, 384: 518-519 [16] 刘鸿雁, 蒋子涵, 戴景钰, 等. 岩石裂隙决定喀斯特关键带地表木本与草本植物覆盖. 中国科学: 地球科学, 2019, 49(12): 1974-1981 [17] Berthelin R, Hartmann A. The shallow subsurface of karst systems: Review and directions// Bertrand C, De-nimal S, Steinmann M, eds. Eurokarst 2018, Besançon. Cham, Germany: Springer International Publishing, 2020: 61-68 [18] Waele JD, Gutierrez F. Karst Hydrogeology, Geomorphology and Caves. Hoboken, NJ, USA: John Wiley & Sons, 2022 [19] 李思亮, 王浩阳, 晏智锋, 等. 地球关键带过程和生态环境效应研究进展. 矿物岩石地球化学通报, 2025, 44(4): 695-709 [20] Hahm WJ, Rempe DM, Dralle DN, et al. Lithologically controlled subsurface critical zone thickness and water storage capacity determine regional plant community composition. Water Resources Research, 2019, 55: 3028-3055 [21] 刘长成, 王斌, 郭柯, 等. 中国喀斯特植被分类系统. 广西植物, 2021, 41(10): 1618-1631 [22] 曾馥平, 彭晚霞, 宋同清, 等. 桂西北喀斯特人为干扰区植被自然恢复22年后群落特征. 生态学报, 2007, 27(12): 5110-5119 [23] 聂云鹏, 陈洪松, 王克林, 等. 采用稳定同位素技术判定喀斯特地区植物水分来源的挑战与可能应对方案. 应用生态学报, 2017, 28(7): 2361-2368 [24] 莫小妹, 彭韬, 张信宝, 等. 喀斯特区岩性限制下近20年植被恢复趋势与生态治理建议. 地球与环境, 2025, 53(1): 44-53 [25] 罗东辉, 夏婧, 袁婧薇, 等. 我国西南山地喀斯特植被的根系生物量初探. 植物生态学报, 2010, 34(5): 611-618 [26] 郭柯, 刘长成, 董鸣. 我国西南喀斯特植物生态适应性与石漠化治理. 植物生态学报, 2011, 35(10): 991-999 [27] 黄甫昭. 岩溶木本植物对干旱的生理生态适应. 广西植物, 2021, 41(10): 1644-1653 [28] Liu WN, Chen HS, Zou QY, et al. Divergent root water uptake depth and coordinated hydraulic traits among typical karst plantations of subtropical china: Implication for plant water adaptation under precipitation changes. Agricultural Water Management, 2021, 249: 106798 [29] 宋海燕, 张静, 李素慧, 等. 基于容器分区处理探究黑麦草生长对喀斯特不同土壤生境和水分的响应. 生态学报, 2019, 39(10): 3557-3565 [30] Du H, Liu L, Su LA, et al. Seasonal changes and vertical distribution of fine root biomass during vegetation restoration in a karst area, southwest China. Frontiers in Plant Science, 2019, 9: 2001 [31] 吴静, 盛茂银. 我国喀斯特植被根系生态学研究进展. 植物科学学报, 2020, 38(4): 565-573 [32] 陈洪松, 聂云鹏, 王克林. 岩溶山区水分时空异质性及植物适应机理研究进展. 生态学报, 2013, 33(2): 317-326 [33] 周运超, 张珍明, 黄先飞. 喀斯特小流域土壤异质性研究. 北京: 科学出版社, 2019 [34] 张君, 陈洪松, 付智勇, 等. 西南喀斯特小流域关键带含水介质分布特征. 土壤学报, 2023, 60(4): 969-982 [35] Wang F, Zhang J, Lian JJ, et al. Spatial variability of epikarst thickness and its controlling factors in a dolomite catchment. Geoderma, 2022, 428: 116213 [36] Jiang WW, Peng T, Zhang XB, et al. High-resolution electrical resistivity tomography for quantitative interpretation of sub-surface karst structures: A case study in southwest China. Geoderma, 2025, 461: 117460 [37] Pardo-Igúzquiza E, Dowd PA, Ruiz-Constán A, et al. Epikarst mapping by remote sensing. Catena, 2018, 165: 1-11 [38] Veress M. Interaction between the Epikarst and Surface Karstification (case studies). Cham: Springer Nature, 2024 [39] Williams P. The role of the epikarst in karst and cave hydrogeology: A review. International Journal of Speleo-logy, 2008, 37: 1-10 [40] Wang ZY, Singh J, Davies AB. Consistent patterns of LiDAR-derived measures of savanna vegetation comple-xity between wet and dry seasons. Ecological Indicators, 2025, 170: 113061 [41] 肖建勇, 王世杰, 白晓永, 等. 喀斯特关键带植被时空变化及其驱动因素. 生态学报, 2018, 38(24): 8799-8812 [42] 靖娟利, 赵婷, 王永锋, 等. 西南喀斯特核心分布区植被对极端气候的响应. 中国环境科学, 2024, 44(6): 3353-3364 [43] 何邦科, 朱文泉, 史培军, 等. 复杂地形区植被覆盖度遥感精细估算方法: 以青藏高原山地区为例. 生态学报, 2024, 44(20): 9039-9052 [44] Luo ZD, Lian JJ, Nie YP, et al. Improving soil thickness estimations and its spatial pattern on hillslopes in karst forests along latitudinal gradients. Geoderma, 2024, 441: 116749 [45] 张君, 付智勇, 陈洪松, 等. 西南喀斯特白云岩坡地土壤-表层岩溶带结构及水文特征. 应用生态学报, 2021, 32(6): 2107-2118 [46] Zhou QW, Luo Y, Zhou X, et al. Response of vegetation to water balance conditions at different time scales across the karst area of Southwestern China: A remote sensing approach. Science of the Total Environment, 2018, 645: 460-470 [47] Wang S, Yan Y, Zhao YJ, et al. Co-evolution among soil thickness, epikarst weathering degree, and runoff characteristics on a subtropical karst hillslope. Journal of Hydrology, 2024, 628: 130499 [48] 王发, 聂云鹏, 陈洪松, 等. 典型喀斯特白云岩小流域土壤-表层岩溶带厚度空间异质性特征. 地质科技通报, 2024, 43(1): 306-314 [49] 刘彧, 刘金涛, 刘承帅, 等. 大气成因放射性宇生核素10Be指示土壤演化: 机理与进展. 地球科学进展, 2024, 39(6): 565-575 [50] 刘金涛, 赵薇, 刘彧. 土壤厚度演化模型理论方法研究进展. 土壤学报, 2024, 61(2): 319-330 [51] Zhang XB, Yue YM, Shi L, et al. A preliminary study on estimating soil thickness on karst dolomite slopes using ground gamma radiation dose rate in Southwest China. Catena, 2025, 260: 109472 [52] 曹建华, 杨慧, 张春来, 等. 中国西南岩溶关键带结构与物质循环特征. 中国地质调查, 2018, 5(5): 1-12 [53] Chen JK, Li JH, Zhang T, et al. Spatial differentiation characteristics and controlling factors of the epikarst thickness in Southwest China. Geoderma, 2025, 463: 117586 [54] Leite PAM, Rempe DM, McInnes KJ, et al. Trees enhance rock moisture storage: A major pool in karst drylands and crucial during droughts. Water Resources Research, 2025, 61: e2024WR038692 [55] Zhang J, Wang S, Fu ZY, et al. Characterizing rapid infiltration processes on complex hillslopes: Insights from soil moisture response to rainfall events. Journal of Hydrology, 2024, 644: 132110 [56] Kendall C, McDonnell J. Isotope Tracers in Catchment Hydrology. Amsterdam: Elsevier, 2012 [57] Jarvis N, Koestel J, Larsbo M. Understanding preferential flow in the vadose zone: Recent advances and future prospects. Vadose Zone Journal, 2016, 15: vzj2016.09.0075 [58] Wang F, Chen HS, Lian JJ, et al. Preferential flow in different soil architectures of a small karst catchment. Vadose Zone Journal, 2018, 17: 180107 [59] Yang JO, Xu XL, Liu MX, et al. Effects of Napier grass management on soil hydrologic functions in a karst landscape, southwestern China. Soil and Tillage Research, 2016, 157: 83-92 [60] Liu JX, Deng ZM, Chen LD, et al. Quantifying the influence of soil-rock interfaces on water infiltration rate in karst landscapes. Geoderma, 2025, 460: 117432 [61] Sohrt J, Ries F, Sauter M, et al. Significance of preferential flow at the rock soil interface in a semi-arid karst environment. Catena, 2014, 123: 1-10 [62] Zhao ZM, Shen Y, Jiang RH, et al. Rock outcrops change infiltrability and water flow behavior in a karst soil. Vadose Zone Journal, 2020, 19: e20002 [63] Hartmann A, Goldscheider N, Wagener T, et al. Karst water resources in a changing world: Review of hydrological modeling approaches. Reviews of Geophysics, 2014, 52: 218-242 [64] Zhang J, Wang S, Fu ZY, et al. Regulation of preferential flow by soil thickness on small hillslopes with complex topography through intensive high-frequency soil moisture monitoring. Geophysical Research Letters, 2025, 52: e2024GL112674 [65] Tokumoto I, Heilman JL, McInnes KJ, et al. Calibration and use of neutron moisture and gamma density probes in rocky soils. Soil Science Society of America Journal, 2012, 76: 2136-2142 [66] Leite PAM, Wilcox BP, McInnes KJ, et al. Applicability of soil moisture sensors for monitoring water dynamics in rock: A field test in weathered limestone. Vadose Zone Journal, 2021, 20: e20164 [67] Peng T, Wang SJ. Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in southwest China. Catena, 2012, 90: 53-62 [68] 陈洪松, 杨静, 傅伟, 等. 桂西北喀斯特峰丛不同土地利用方式坡面产流产沙特征. 农业工程学报, 2012, 28(16): 121-126 [69] Fu ZY, Chen HS, Zhang W, et al. Subsurface flow in a soil-mantled subtropical dolomite karst slope: A field rainfall simulation study. Geomorphology, 2015, 250: 1-14 [70] Wang S, Fu ZY, Chen HS, et al. Mechanisms of surface and subsurface runoff generation in subtropical soil-epikarst systems: Implications of rainfall simulation experiments on karst slope. Journal of Hydrology, 2020, 580: 124370 [71] Zhang J, Chen HS, Fu ZY, et al. Effect of soil thickness on rainfall infiltration and runoff generation from karst hillslopes during rainstorms. European Journal of Soil Science, 2022, 73: e13288 [72] Guo F, Jiang GH, Zhao HL, et al. Physicochemical parameters and phytoplankton as indicators of the aquatic environment in karstic springs of south China. Science of the Total Environment, 2019, 659: 74-83 [73] Zhang J, Chen HS, Fu ZY, et al. Towards hydrological connectivity in the karst hillslope critical zone: Insight from using water isotope signals. Journal of Hydrology, 2023, 617: 128926 [74] Zhang J, Wang S, Fu ZY, et al. Soil thickness controls the rainfall-runoff relationship at the karst hillslope critical zone in southwest China. Journal of Hydrology, 2022, 609: 127779 [75] Hasenmueller EA, Gu X, Weitzman JN, et al. Weathering of rock to regolith: The activity of deep roots in bedrock fractures. Geoderma, 2017, 300: 11-31 [76] 王发. 白云岩峰丛洼地小流域径流的多源补给特征及其模拟. 博士论文. 北京: 中国科学院大学, 2021 [77] Liu XP, He YH, Zhang TH, et al. The response of infiltration depth, evaporation, and soil water replenishment to rainfall in mobile dunes in the Horqin sandy land, northern China. Environmental Earth Sciences, 2015, 73: 8699-8708 [78] Mo CX, Jiang CH, Long ST, et al. Comprehensive eva-luation and attribution analysis of baseflow variation in a typical karst basin, Southwest China. Journal of Hydro-logy: Regional Studies, 2025, 57: 102185 [79] 陈雪莲, 陈喜, 张志才, 等. 基于稳定同位素和水化学成分的西南喀斯特流域径流划分. 地球与环境, 2013, 41(2): 104-110 [80] Brinkerhoff CB, Gleason CJ, Kotchen MJ, et al. Ephemeral stream water contributions to United States drainage networks. Science, 2024, 384: 1476-1482 [81] Bicalho CC, Batiot-Guilhe C, Taupin JD, et al. A conceptual model for groundwater circulation using isotopes and geochemical tracers coupled with hydrodynamics: A case study of the Lez karst system, France. Chemical Geology, 2019, 528: 118442 [82] 张艳青, 张志才, 陈喜, 等. 西南喀斯特流域岩溶水氢氧同位素时空分布特征及水文意义: 以后寨河流域为例. 地球与环境, 2022, 50(1): 25-33 [83] Hu K, Chen HS, Nie YP, et al. Seasonal recharge and mean residence times of soil and epikarst water in a small karst catchment of southwest China. Scientific Reports, 2015, 5: 10215 [84] Jiang GH, Guo F, Liu F, et al. Hydrogeological responses of karst compartments to meteorological drought in subtropical monsoon regions. Journal of Hydrology, 2025, 655: 132940 [85] Chen X, Zhang ZC, Soulsby C, et al. Characterizing the heterogeneity of karst critical zone and its hydrological function: An integrated approach. Hydrological Processes, 2018, 32: 2932-2946 [86] Chang Y, Liu Y, Liu L. Contrasting hydrological responses to climate change in two adjacent catchments dominated by karst and nonkarst. Journal of Hydrology, 2023, 625: 130013 [87] Yang L, Zhang HD, Chen LD. Identification on thre-shold and efficiency of rainfall replenishment to soil water in semi-arid loess hilly areas. Science China Earth Sciences, 2018, 61: 292-301 [88] Luo ZD, Wang DZ, Nie YP, et al. Spatiotemporal patterns of soil water replenishment and their seasonal origins in a subtropical red soil critical zone. Journal of Hydrology, 2023, 627: 130392 [89] Luo ZD, Nie YP, Ding YL, et al. Replenishment and mean residence time of root-zone water for woody plants growing on rocky outcrops in a subtropical karst critical zone. Journal of Hydrology, 2021, 603: 127136 [90] Chen L, Zhang KL, Zhang ZD, et al. Response of soil water movement to rainfall under different land uses in karst regions. Environmental Earth Sciences, 2023, 82: 50 [91] Hahm WJ, Rempe DM, Dralle DN, et al. Oak transpiration drawn from the weathered bedrock vadose zone in the summer dry season. Water Resources Research, 2020, 56: e2020WR027419 [92] Yan YJ, Dai QH, Yang YQ, et al. Epikarst shallow fissure soil systems are key to eliminating karst drought limitations in the karst rocky desertification area of SW China. Ecohydrology, 2022, 15: e2372 [93] 张宇, 张明军, 王圣杰, 等. 基于稳定氧同位素确定植物水分来源不同方法的比较. 生态学杂志, 2020, 39(4): 1356-1368 [94] Jia G, Liu ZQ, Chen LX, et al. Distinguish water utilization strategies of trees growing on Earth-rocky mountainous area with transpiration and water isotopes. Ecology and Evolution, 2017, 7: 10640-10651 [95] 容丽, 王世杰, 俞国松, 等. 荔波喀斯特森林4种木本植物水分来源的稳定同位素分析. 林业科学, 2012, 48(7): 14-22 [96] Cai LL, Xiong KN, Li Y, et al. Coexisting plants restored in karst desertification areas cope with drought by changing water uptake patterns and improving water use efficiency. Journal of Hydrology, 2025, 654: 132813 [97] 曾祥明, 徐宪立, 钟飞霞, 等. MixSIAR和IsoSource模型解析植物水分来源的比较研究. 生态学报, 2020, 40(16): 5611-5619 [98] 祝俊林. 滇东喀斯特山区出露岩石-土壤结构下土壤水分动态及植物水分来源. 硕士论文. 昆明: 云南大学, 2025 [99] 范波. 喀斯特石漠化治理流域植物水分利用与生态水文调控. 硕士论文. 贵阳: 贵州师范大学, 2023 [100] 杜雪莲, 王世杰, 罗绪强. 黔中喀斯特石漠化区不同小生境常见木本植物水分来源特征. 长江流域资源与环境, 2015, 24(7): 1168-1176 [101] 刘九缠. 隧道建设对岩溶槽谷区植物水分利用策略的影响. 硕士论文. 重庆: 西南大学, 2019 [102] 吴虹余, 蒋勇军, 吴泽, 等. 岩溶山地不同坡位植物水分来源和水分利用效率. 水土保持通报, 2025, 45(4): 19-28 [103] Liu JC, Shen LC, Wang ZX, et al. Response of plants water uptake patterns to tunnels excavation based on stable isotopes in a karst trough valley. Journal of Hydrology, 2019, 571: 485-493 [104] Cai LL, Xiong KN, Liu ZQ, et al. Seasonal variations of plant water use in the karst desertification control. Science of the Total Environment, 2023, 885: 163778 [105] Deng Y, Kuo YM, Jiang ZC, et al. Using stable isotopes to quantify water uptake by Cyclobalanopsis glauca in typical clusters of karst peaks in China. Environmental Earth Sciences, 2015, 74: 1039-1046 [106] Cai LL, Xiong KN, Liu ZR, et al. Water competition among coexisting plants in rock-dominated habitats of subtropical karst desertification. Agriculture, Ecosystems & Environment, 2025, 381: 109419 [107] Nie YP, Chen HS, Wang KL, et al. Water source utilization by woody plants growing on dolomite outcrops and nearby soils during dry seasons in karst region of southwest China. Journal of Hydrology, 2012, 420-421: 264-274 [108] Wang DJ, Shen YX, Huang J, et al. Rock outcrops redistribute water to nearby soil patches in karst landscapes. Environmental Science and Pollution Research, 2016, 23: 8610-8616 [109] Neil EJ, Fu H, Si BC. A process-based water stable isotope mixing model for plant water sourcing. Ecohydro-logy, 2024, 17: e2611 [110] Kuppel S, Tetzlaff D, Maneta MP, et al. EcH2O-iso 1.0: Water isotopes and age tracking in a process-based, distributed ecohydrological model. Geoscientific Model Development, 2018, 11: 3045-3069 [111] Evaristo J, Kim M, van Haren J, et al. Characterizing the fluxes and age distribution of soil water, plant water, and deep percolation in a model tropical ecosystem. Water Resources Research, 2019, 55: 3307-3327 [112] Sprenger M, Tetzlaff D, Buttle J, et al. Water ages in the critical zone of long-term experimental sites in northern latitudes. Hydrology and Earth System Sciences, 2018, 22: 3965-3981 [113] Miguez-Macho G, Fan Y. Spatiotemporal origin of soil water taken up by vegetation. Nature, 2021, 598: 624-628 [114] Nie YP, Ding YL, Zhang HL, et al. Comparison of woody species composition between rocky outcrops and nearby matrix vegetation on degraded karst hillslopes of southwest China. Journal of Forestry Research, 2019, 30: 911-920 [115] Liu WN, Nie YP, Luo ZD, et al. Transpiration rates decline under limited moisture supply along hillslopes in a humid karst terrain. Science of the Total Environment, 2023, 894: 164977 [116] Zeng XM, Xu XL, Yi R, et al. Sap flow and plant water sources for typical vegetation in a subtropical humid karst area of southwest China. Hydrological Processes, 2021, 35: e14090 [117] 闵惠琳, 郑路, 张继辉, 等. 2020—2021年南亚热带优势树种树干液流数据集. 中国科学数据(中英文网络版), 2022, 7(3): 316-323 [118] Hu WT, Zhao P. Soil warming affects sap flow and stomatal gas exchange through altering functional traits in a subtropical forest. Science of the Total Environment, 2024, 918: 170581 [119] 邓艳. 西南典型峰丛洼地岩溶关键带植被-表层岩溶水的耦合过程. 博士论文. 武汉: 中国地质大学, 2019 [120] Munoz-Villers LE, Holwerda F, Alvarado-Barrientos MS, et al. Reduced dry season transpiration is coupled with shallow soil water use in tropical montane forest trees. Oecologia, 2018, 188: 303-317 [121] Wu Z, Behzad H, He Q, et al. Seasonal transpiration dynamics of evergreen Ligustrum lucidum linked with water source and water-use strategy in a limestone karst area, southwest China. Journal of Hydrology, 2021, 597: 126199 [122] 吕同汝, 蒋勇军, 吴泽, 等. 亚热带岩溶区典型常绿和落叶树种的蒸腾特征及其对环境因子的响应. 生态学报, 2022, 42(3): 1047-1058 [123] Carrière SD, Martin-StPaul NK, Cakpo CB, et al. The role of deep vadose zone water in tree transpiration during drought periods in karst settings: Insights from isotopic tracing and leaf water potential. Science of the Total Environment, 2020, 699: 134332 [124] Lapides DA, Dralle DN, Hahm WJ, et al. Root water uptake resolved by distributed moisture storage changes through soil and weathered bedrock. Water Resources Research, 2025, 61: e2025WR040778 [125] Harmon R, Barnard HR, Singha K. Water table depth and bedrock permeability control magnitude and timing of transpiration-induced diel fluctuations in groundwater. Water Resources Research, 2020, 56: e2019-WR025967 [126] Liu WN, Behzad HM, Luo ZD, et al. Species-specific root distribution and leaf iso/anisohydric tendencies shape transpiration patterns across heterogeneous karst habitats. Plant, Cell & Environment, 2025, 48: 199-212 [127] Du H, Fu W, Song TQ, et al. Water-use efficiency in a humid karstic forest in southwestern China: Interactive responses to the environmental drivers. Journal of Hydrology, 2023, 617: 128973 [128] Hu LK, Zhou QW, Peng DW, et al. Effects of vegetation restoration on the temporal variability of soil moisture in the humid karst region of southwest China. Journal of Hydrology: Regional Studies, 2024, 53: 101852 [129] Zhang J, Wang Z, Zhuang DH, et al. Evaluating the hydrological function of vegetation restoration in fragile karst area: Insights from the continuous surface and subsurface runoff monitoring. Soil and Tillage Research, 2023, 234: 105847 [130] Tong XW, Brandt M, Yue YM, et al. Forest management in southern China generates short term extensive carbon sequestration. Nature Communications, 2020, 11: 129 [131] Liu YY, Lian JJ, Luo ZD, et al. Spatiotemporal variations in evapotranspiration and transpiration fraction following changes in climate and vegetation in a karst basin of southwest China. Journal of Hydrology, 2022, 612: 128216 [132] Yuan J, Li R, Huang K. Driving factors of the variation of ecosystem service and the trade-off and synergistic relationships in typical karst basin. Ecological Indicators, 2022, 142: 109253 [133] Luo W, Liu MX, Yao ZY, et al. Uncovering the impact of climate and vegetation changes on runoff in karstic regions of southwest China. Journal of Environmental Management, 2024, 370: 122617 [134] Peng L, Zhou S, Chen TT. Mapping forest restoration probability and driving archetypes using a Bayesian belief network and SOM: Towards karst ecological restoration in Guizhou, China. Remote Sensing, 2022, 14: 780 [135] Lian JJ, Chen HS, Wang F, et al. Separating the relative contributions of climate change and ecological restoration to runoff change in a mesoscale karst basin. Catena, 2020, 194: 104705 [136] 张沛凌, 曾思博, 蒋勇军, 等. 湿润气候抵消了植被恢复对西南岩溶区水资源的负面影响. 生态学报, 2025, 45(12): 5970-5985 [137] Yi R, Xu XL, Zhu SD, et al. Difference in hydraulic resistance between planted forest and naturally regenerated forest and its implications for ecosystem restoration in subtropical karst landscapes. Journal of Hydrology, 2021, 596: 126093 [138] 庞庆玲, 韦慧丝, 黄侩侩, 等. 南亚热带喀斯特区原生林和次生林凋落物与土壤水文效应. 地理科学研究, 2023, 12(1): 52-60 [139] 崔自杰, 孙阁, 张瑶琦, 等. 中国桉树人工林水文效应研究进展. 林业科学, 2025, 61(7): 129-139 [140] Chen L, Zhang KL, Wang GP. Dynamic response of soil water to rainfall for different runoff plots on a karst hillslope. Geoderma, 2025, 460: 117394 [141] Gao HK, Hrachowitz M, Wang-Erlandsson L, et al. Root zone in the Earth system. Hydrology and Earth System Sciences, 2024, 28: 4477-4499 [142] Huang ZY, Yeh PJF, Jiao JJ, et al. A new approach for assessing groundwater recharge by combining GRACE and baseflow with case studies in karst areas of southwest China. Water Resources Research, 2023, 59: e2022WR032091 [143] Fan Y, Miguez-Macho G, Jobbágy EG, et al. Hydrologic regulation of plant rooting depth. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114: 10572-10577 [144] Hulsman P, Keune J, Koppa A, et al. Incorporating plant access to groundwater in existing global, satellite-based evaporation estimates. Water Resources Research, 2023, 59: e2022WR033731 [145] Sarrazin F, Hartmann A, Pianosi F, et al. V2Karst V1.1: A parsimonious large-scale integrated vegetation-recharge model to simulate the impact of climate and land cover change in karst regions. Geoscientific Model Development, 2018, 11: 4933-4964 [146] Zhang ZC, Chen X, Ghadouani A, et al. Modelling hydrological processes influenced by soil, rock and vegetation in a small karst basin of southwest China. Hydrological Processes, 2011, 25: 2456-2470 [147] Cai LB, Chen X, Huang RC, et al. Runoff change induced by vegetation recovery and climate change over carbonate and non-carbonate areas in the karst region of South-west China. Journal of Hydrology, 2022, 604: 127231 |
| [1] | ZHANG Jun, CHEN Hongsong, NIE Yunpeng, FU Zhiyong, LIAN Jinjiao, WANG Fa, LUO Zidong, WANG Kelin. Research progress on structure and hydrological processes in the karst critical zone of southwest China [J]. Chinese Journal of Applied Ecology, 2024, 35(4): 985-996. |
| [2] | LIU Xiuhua, ZHOU Ziyi, HE Yi, MA Yandong, LI Bingxiang, ZHENG Ce. Water use characteristics and the mechanism of water uptake in two typical sand-fixing species in Mu Us sandy land [J]. Chinese Journal of Applied Ecology, 2024, 35(4): 897-908. |
| [3] | ZHANG Jun, FU Zhi-yong, CHEN Hong-song, LIAN Jin-jiao, QIN Chang. Soil-epikarst structures and their hydrological characteristics on dolomite slopes in karst region of southwest China [J]. Chinese Journal of Applied Ecology, 2021, 32(6): 2107-2118. |
| [4] | LI Yu-qian, MENG Yu-chuan, SONG Hong-wei, DU Cheng-hong, XIANG Qi-yun. Distribution of hydrogen and oxygen stable isotope of water in soil-plant-atmosphere continuum (SPAC)system of a typical forest area [J]. Chinese Journal of Applied Ecology, 2021, 32(6): 1928-1934. |
| [5] | BAO Xin, JIANG Yan. Research progress on non-point source pollution models for semi-arid and semi-humid watersheds [J]. Chinese Journal of Applied Ecology, 2020, 31(2): 674-684. |
| [6] | CHENG Cai, LI Yu-jie, LONG Ming-zhong, LI Xiao-na. Application potential of bryophyte soil crust on the control of karst rocky desertification [J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2501-2510. |
| [7] | WU Zi-yi, XIE Ping, SANG Yan-fang, GU Hai-ting. Correlation coefficient-based principle and method for the classification of jump degree in hydrological time series [J]. Chinese Journal of Applied Ecology, 2018, 29(4): 1042-1050. |
| [8] | NIE Yun-peng, CHEN Hong-song, WANG Ke-lin, SCHWINNING Susanne. Challenges and probable solutions for using stable isotope techniques to identify plant water sources in karst regions: A review [J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2361-2368. |
| [9] | LI Jing-bao, LUO Zhong-hai, YE Ya-ya, YANG Bo. Eco-hydrological impacts of Three Gorges Reservoir’s operation on three outfalls of Chingjiang River [J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1285-1293. |
| [10] | YANG Dan, FAN Da-yong, XIE Zong-qiang, ZHANG Ai-ying, XIONG Gao-ming, ZHAO Chang-ming, XU Wen-ting. Research progress on the mechanisms and influence factors of nitrogen retention and transformation in riparian ecosystems [J]. Chinese Journal of Applied Ecology, 2016, 27(3): 973-980. |
| [11] | DENG Yan1;QIN Xing-ming1,2;JIANG Zhong-cheng1;LUO Wei-qun1;QI Xiao-fan1,3. Soil water and its karst effect in epikarst dynamic system. [J]. Chinese Journal of Applied Ecology, 2009, 20(07): 1586-1590 . |
| [12] | HUANG Yu-qing1;ZHANG Zhong-feng1;HE Cheng-xin1;ZHAO Ping2;YUAN Wei-Yuan1,3; JIAO Ji-fei1,3;YOU Ye-min1,3 . Seasonal variation of Cyclobalanopsis glauca whole-tree transpiration in karst region. [J]. Chinese Journal of Applied Ecology, 2009, 20(02): 256-264 . |
| [13] | DIAO Yiwei, PEI Tiefan . Research advances in dynamic mechanism and its simulation of eco-hydrological process in forest catchment [J]. Chinese Journal of Applied Ecology, 2004, (12): 2369-2376. |
| [14] | DIAO Yiwei, PEI Tiefan . Research advances in dynamic mechanism and its simulation of eco-hydrological process in forest catchment [J]. Chinese Journal of Applied Ecology, 2004, (12): 2369-2376. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||