Welcome to Chinese Journal of Applied Ecology! Today is Share:

Chinese Journal of Applied Ecology ›› 2021, Vol. 32 ›› Issue (1): 201-210.doi: 10.13287/j.1001-9332.202101.012

• Original Articles • Previous Articles     Next Articles

Simulation on soil moisture and water productivity of apple orchard on the Loess Plateau, Northwest China

WANG Xian-zhi1,2, ZHAO Xi-ning1,3*, GAO Xiao-dong1,3, WEI Wei4, WANG Shao-fei1,2, YU Liu-yang1,2, WANG Jia-xin1,2, SHAO Zhu-en1,2   

  1. 1Ministry of Education Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China;
    2College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China;
    3Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China;
    4State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
  • Received:2020-07-18 Accepted:2020-10-13 Online:2021-01-15 Published:2021-07-15
  • Contact: * E-mail: xiningz@aliyun.com
  • Supported by:
    National Key Research and Development Program (2016YFC0400204), the National Natural Science Foundation of China (41771316) and the Shaanxi Key Research and Development Program (2020ZDLNY07-04).

Abstract: The WinEPIC model was used to simulate the dynamics of soil moisture and water productivity in the deep layer of the dry farm apple orchard of Changwu in the Loess Plateau from 1980 to 2018, aiming to provide a scientific basis for the sustainable development of apple production in the area. The results showed that the average annual yield of apple orchards in Changwu area was 27.37 t·hm-2, the average annual evapotranspiration was 673.66 mm, and the average annual water productivity was 4.07 kg·m-3. The number of water stress days in adult apple trees was mainly affected by rainfall. The average number of stress days in the late stage of apple tree growth was 46.46 d. The soil water content in deep layer began to approach withering humidity as early as 9-year-old apple trees. Water supply in the whole growing season of Changwu area was the dominant factor impacting the yield of orchards. The reduction of effective soil water content in deep soil was the main factor restricting yield enhancement in the middle and late growth stages of apple trees. When there was no sufficient precipitation, apple trees would use soil water from deeper soil layer. Excessive precipitation could not be used by apple trees but could be converted into shallow soil moisture and evaporation if the deep layer had less available water. For the mature apple trees, less than 500 mm or higher than 700 mm of annual water supply would cause a decline in production. For apple orchard at different growth periods, water management strategy should be adjusted according to rainfall conditions in different years. Supplementary irrigation, rainwater retention, covering, and pruning of branches could be used to reduce the unproductive and luxury water consumption of apple trees, delay the appearance of deep dry layer of soil, and avoid the waste of water resources while ensuring the growth of apple trees.

Key words: soil water dynamics, water productivity, precipitation, WinEPIC