[1] Yue TX, Zhao N, Fan ZM, et al. Methods for simulating climate scenarios with improved spatiotemporal specificity and less uncertainty. Global and Planetary Change, 2019, 181: 102973 [2] 王琚钢, 峥嵘, 白淑兰, 等. 外生菌根对干旱胁迫的响应. 草业学报, 2012, 31(6): 1571-1576 [3] Yang Y, Li T, Wang Y, et al. Negative effects of multiple global change factors on soil microbial diversity. Soil Biology and Biochemistry, 2021, 156: 108229 [4] Luo S, He B, Zeng Q, et al. Effects of seasonal variation on soil microbial community structure and enzyme activity in a Masson pine forest in Southwest China. Journal of Mountain Science, 2020, 17: 1398-1409 [5] 王楠楠, 杨雪, 李世兰, 等. 降水变化驱动下红松阔叶林土壤真菌多样性的分布格局. 应用生态学报, 2013, 24(7): 1985-1990 [6] Li J, Benti G, Wang D, et al. Effect of alteration in precipitation amount on soil microbial community in a semi-arid grassland. Frontiers in Microbiology, 2022, 13: 842446 [7] Chen J, Wang P, Wang C, et al. Fungal community demonstrates stronger dispersal limitation and less network connectivity than bacterial community in sediments along a large river. Environmental Microbiology, 2020, 22: 3121-3131 [8] Yang X, Zhu K, Loik ME, et al. Differential responses of soil bacteria and fungi to altered precipitation in a meadow steppe. Geoderma, 2021, 384: 114812 [9] Zhao Q, Shen W, Chen Q, et al. Spring drying and intensified summer rainfall affected soil microbial community composition but not enzyme activity in a subtropical forest. Applied Soil Ecology, 2018, 130: 219-225 [10] Cregger MA, Schadt CW, McDowell NG, et al. Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. Applied and Environmental Microbiology, 2012, 78: 8587-8594 [11] Lauber CL, Hamady M, Knight R, et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 2009, 75: 5111-5120 [12] Xu S, Geng W, Sayer EJ, et al. Soil microbial biomass and community responses to experimental precipitation change: A meta-analysis. Soil Ecology Letters, 2020, 2: 93-103 [13] Wang S, Zuo X, Awada T, et al. Changes of soil bacterial and fungal community structure along a natural aridity gradient in desert grassland ecosystems, Inner Mongolia. Catena, 2021, 205: 105470 [14] Fromin N, Shihan A, Santonja M, et al. Soil microbial activity in a Mediterranean garrigue responds more to changing shrub community than to reduced rainfall. Plant and Soil, 2020, 449: 405-421 [15] 吴旭东, 蒋齐, 任小玢, 等. 降水水平对荒漠草原生物土壤结皮碳、氮和微生物的影响. 草业学报, 2021, 30(7): 34-43 [16] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000 [17] 王占军, 马琨, 崔慧珍, 等. 土壤丛枝菌根真菌与宁夏主要草原类型植被群落分布间的相互关系研究. 草业学报, 2020, 29(12): 150-160 [18] 王小玲, 马琨, 伏云珍, 等. 冬小麦免耕覆盖与生物有机肥施用对土壤细菌群落的影响. 生态学报, 2020, 40(19): 7030-7043 [19] 王小玲, 马琨, 伏云珍, 等. 免耕覆盖及有机肥施用对土壤真菌群落组成及多样性的影响. 应用生态学报, 2020, 31(3): 890-898 [20] Jia M, Gao Z, Gu H, et al. Effects of precipitation change and nitrogen addition on the composition, diversity, and molecular ecological network of soil bacterial communities in a desert steppe. PLoS One, 2021, 16(3): e248194 [21] Wu K, Xu W, Yang W. Effects of precipitation changes on soil bacterial community composition and diversity in the Junggar desert of Xinjiang, China. PeerJ, 2020, 8: e8433 [22] Jiang Y, Lei Y, Yang Y, et al. Divergent assemblage patterns and driving forces for bacterial and fungal communities along a glacier forefield chronosequence. Soil Biology and Biochemistry, 2018, 118: 207-216 [23] 曹昆, 苏夏, 邢志林, 等. 填埋场覆盖土微生物好氧/厌氧共代谢降解氯乙烯的特性、贡献度及微生态研究. 环境科学学报, 2022, 42(5): 405-415 [24] 孙良杰, 齐玉春, 董云社, 等. 全球变化对草地土壤微生物群落多样性的影响研究进展. 地理科学进展, 2012, 31(12): 1715-1723 [25] 李娜, 王宝荣, 安韶山, 等. 黄土高原草地土壤细菌群落结构对于降水变化的响应. 环境科学, 2020, 41(9): 4284-4293 [26] Ventura M, Canchaya C, Tauch A, et al. Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiology and Molecular Biology Reviews, 2007, 71: 495-548 [27] 杨阳, 陈克龙, 章妮, 等. 青海湖流域高寒湿地土壤微生物群落对不同降水梯度的响应. 应用与环境生物学报, 2022, 28(2): 290-299 [28] Hawkes CV, Kivlin SN, Rocca JD, et al. Fungal community responses to precipitation. Global Change Biology, 2011, 17: 1637-1645 [29] Fu W, Chen B, Rillig MC, et al. Community response of arbuscular mycorrhizal fungi to extreme drought in a cold-temperate grassland. New Phytologist, 2022, 234: 2003-2017 [30] Zuo Y, Hu Q, Zhang K, et al. Host and tissue affiliations of culturable endophytic fungi associated with xerophytic plants in the desert region of northwest China. Agronomy, 2022, 12: 12030727 [31] Huang Q, Jiao F, Huang Y, et al. Response of soil fungal community composition and functions on the alteration of precipitation in the grassland of Loess Plateau. Science of the Total Environment, 2021, 751: 142273 [32] Tchabi A, Coyne D, Hountondji F, et al. Arbuscular mycorrhizal fungal communities in sub-Saharan savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. Mycorrhiza, 2008, 18: 181-195 [33] Li X, Qi Z, Yu X, et al. Soil pH drives the phylogenetic clustering of the arbuscular mycorrhizal fungal community across subtropical and tropical pepper fields of China. Applied Soil Ecology, 2021, 165: 103978 [34] Bertam JE, Orwin KH, Clough TJ, et al. Effect of soil moisture and bovine urine on microbial stress. Pedobiologia, 2012, 55: 211-218 [35] Fernández-Calviño D, Bääth E. Growth response of the bacterial community to pH in soils differing in pH. FEMS Microbiology Ecology, 2010, 73: 149-156 [36] Liu C, Ding N, Fu Q, et al. The influence of soil pro-perties on the size and structure of bacterial and fungal communities along a paddy soil chronosequence. European Journal of Soil Biology, 2016, 76: 9-18 |