Chinese Journal of Applied Ecology ›› 2021, Vol. 32 ›› Issue (3): 853-859.doi: 10.13287/j.1001-9332.202103.004
• Original Articles • Previous Articles Next Articles
SUN Yue-yan, WANG Xiu-li, GAO Run-mei*, LI Jin
Received:
2020-08-03
Accepted:
2021-01-03
Online:
2021-03-15
Published:
2021-09-15
Contact:
* E-mail: sxndgrm@163.com
Supported by:
SUN Yue-yan, WANG Xiu-li, GAO Run-mei, LI Jin. Physiological changes of Larix principis-rupprechtii seedlings inoculated with Trichoderma spp. under drought stress[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 853-859.
[1] | 彭俊杰, 何兴元, 陈振举, 等. 华北地区油松林生态系统对气候变CO2浓度升高的响应——基于BIOME-BGC模型和树木年轮的模拟. 应用生态学报, 2012, 23(7): 1733-1742 [Peng J-J, He X-Y, Chen Z-J, et al. Responses of Pinus tabuliformis forest ecosystem in North China to climate change and elevated CO2: A simu-lation based on BIOME-BGC model and tree-ring data. Chinese Journal of Applied Ecology, 2012, 23(7): 1733-1742] |
[2] | 高润梅, 石晓东, 王林, 等. 当年生华北落叶松幼苗的耐旱性. 林业科学, 2015, 51(7): 148-156 [Gao R-M, Shi X-D, Wang L, et al. Drought resistance of one-year-old seedlings of Larix principis-rupprechtii. Scientia Silvae Sinicae, 2015, 51(7): 148-156] |
[3] | 靳翔, 徐庆, 刘世荣, 等. 川西亚高山岷江冷杉和铁杉年轮对气候因子的响应. 林业科学, 2013, 49(1): 21-26 [Jin X, Xu Q, Liu S-R, et al. Responses of the tree-ring of Abies faxoniana and Tsuga chinensis to climate factors in subalpine in western Sichuan. Scientia Silvae Sinicae, 2013, 49(1): 21-26] |
[4] | 贺新生. 现代菌物分类系统. 北京: 科学出版社, 2015: 136-138 [He X-S. The Classification System of Modern Fungi. Beijing: Science Press, 2015: 136-138] |
[5] | Lorito M, Woo SL, Harman GE, et al. Translational research on Trichoderma: From omics to the field. Annual Review of Phytopathology, 2010, 48: 395-417 |
[6] | 刘雪英. 落叶松菌根根际真菌的初步研究. 硕士论文. 哈尔滨: 东北林业大学, 2010 [Liu X-Y. Preliminary Study on Larch Mycorrhiza Rhizosphere Fungi. Master Thesis. Harbin: Northeast Forestry University, 2010] |
[7] | Uddin MN, Rahman UU, Khan W, et al. Effect of Trichoderma harzianum on tomato plant growth and its antagonistic activity against Phythium ultimum and Phytopthora capsici. Egyptian Journal of Biological Pest Control, 2018, 28: 32 |
[8] | Yedidia Ⅱ, Benhamou N, Chet Ⅱ. Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Applied and Environmental Microbiology, 1999, 65: 1061-1070 |
[9] | Zaidi NW, Dar MH, Singh S, et al. Chapter 38-Trichoderma species as abiotic stress relievers in plants// Gupta V, Schmoll M, Herrera-Estrella A, eds. Biotechnology and Biology of Trichoderma. Amsterdam, the Netherlands: Elsevier Science Publisher, 2014: 515-525 |
[10] | Hermosa R, Viterbo A, Chet I, et al. Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 2012, 158: 17-25 |
[11] | Harman GE. Trichoderma: Not just for biocontrol anymore. Phytoparasitica, 2011, 39: 103-108 |
[12] | 王秀丽, 高润梅. 根际接种木霉对干旱胁迫下华北落叶松幼苗生长的影响. 东北林业大学学报, 2019, 47(9): 81-84 [Wang X-L, Gao R-M. Inoculation effect of ectomycrrhizal fungi on Larix principis-rupprechtii under drought stress. Journal of Northeast Forestry University, 2019, 47(9): 81-84] |
[13] | 尹大川, 杨立宾, 邓勋, 等. 绿木霉对樟子松苗木生长指标及生理生化指标的影响. 北京林业大学学报, 2015, 37(1): 78-83 [Yin D-C, Yang L-B, Deng X, et al. How Trichoderma virens affects growth indicators, physiological and biochemical parameters of Pinus sylvestris var. mongolica seedlings. Journal of Beijing Forestry University, 2015, 37(1): 78-83] |
[14] | 尹大川, 邓勋, Chet I, 等. 厚环乳牛肝菌(Suillus grevillei)N40与绿木霉(Trichoderma virens)T43复合接种下樟子松苗木的生理响应. 生态学杂志, 2014, 33(8): 2142-2147 [Yin D-C, Deng X, Chet I, et al. Physiological responses of Pinus sylvestris var. mongolica seedlings to the interaction between Suillus grevillei N40 and Trichoderma virens T43. Chinese Journal of Ecology, 2014, 33(8): 2142-2147] |
[15] | 王秀丽. 接种木霉对华北落叶松和油松幼苗耐旱性的影响. 硕士论文. 山西太谷: 山西农业大学, 2019 [Wang X-L. Effects of Inoculating Trichoderma spp. on Drought Tolerance of Larix principis-rupprechtii and Pinus tabuliformis Seedlings. Master Thesis. Taigu, Shanxi: Shanxi Agricultural University, 2019] |
[16] | 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 148-219 [Li H-S. Plant Physiology and Biochemistry Principles and Techniques. Beijing: Higher Education Press, 2000: 148-219] |
[17] | 吴强盛, 夏仁学, 胡正嘉. 丛枝菌根对枳实生苗抗旱性的影响研究, 应用生态学报, 2005, 16(3): 459-463 [Wu Q-S, Xia R-X, Hu Z-J. Effects of arbuscular mycorrhiza on drought tolerance of Poncirus trifoliata. Chinese Journal of Applied Ecology, 2005, 16(3): 459-463] |
[18] | 闫伟, 韩秀丽, 白淑兰, 等. 虎榛子几种菌根苗抗旱机制的研究. 林业科学, 2006, 42(12): 73-76 [Yan W, Han X-L, Bai S-L, et al. Research on drought resistance mechanism to different mycorrhizal seedlings of Ostyopsis davidiana. Scientia Silvae Sinicae, 2006, 42(12): 73-76] |
[19] | 陈婕, 谢靖, 唐明. 水分胁迫下丛枝菌根真菌对紫穗槐生长和抗旱性的影响. 北京林业大学学报, 2014, 36(6): 142-148 [Chen J, Xie J, Tang M. Effects of arbuscular mycorrhizal fungi on the growth and drought resistance of Amorpha fruticosa under water stress. Journal of Beijing Forestry University, 2014, 36(6): 142-148] |
[20] | 温祝桂, 朱小梅, 刘冲, 等. 两株外生菌根真菌对盐渍土壤中黑松幼苗生长的影响. 中南林业科技大学学报, 2019, 39(4): 28-33 [Wen Z-G, Zhu X-M, Liu C, et al. Effects of two ectomycorrhizal fungi on growth of Pinus thunbergii seedlings planted in saline soil. Journal of Central South University of Forestry and Technology, 2019, 39(4): 28-33] |
[21] | 王秀丽, 柳昱旻, 高润梅. 外生菌根真菌对干旱条件下油松幼苗生长的影响. 中国水土保持科学, 2019, 17(2): 70-76 [Wang X-L, Liu Y-M, Gao R-M. Effects of ectomycorrhizal fungi on the growth of Pinus tabuliformis seedlings under drought stress. Science of Soil and Water Conservation, 2019, 17(2): 70-76] |
[22] | 吴强盛, 邹英宁, 夏仁学. 水分胁迫下丛枝菌根真菌对红橘叶片活性氧代谢的影响. 应用生态学报, 2007, 18(4): 825-830 [Wu Q-S, Zou Y-N, Xia R-X. Effects of arbuscular mycorrhizal fungi on reactive oxygen metabolism of Citrus tangerine leaves under water stress. Chinese Journal of Applied Ecology, 2007, 18(4): 825-830] |
[23] | Racic G, Gordana R, Igor V, et al. The influence of Trichoderma brevicompactum treatment and drought on physiological parameters, abscisic acid content and signalling pathway marker gene expression in leaves and roots of tomato. Annals of Applied Biology, 2018, 173: 213-221 |
[24] | Samolski I, Rincón AM, Pinzón LM, et al. The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology, 2012, 158: 129-138 |
[25] | Smith SE, Facelli E, Pope S, et al. Plant performance in stressful environments: Interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant and Soil, 2010, 326: 3-20 |
[26] | Ruiz-L JM. Arbuscular mycorrhizal symbiosis and allevia-tion of osmotic stress. New perspectives for molecular studies. Mycorrhiza, 2003, 13: 309-317 |
[27] | 冷文芳, 贺红士, 布仁仓, 等. 中国东北落叶松属3 种植物潜在分布对气候变化的敏感性分析. 植物生态学报, 2007, 31(5): 825-833 [Leng W-F, He H-S, Bu R-C, et al. sensitivity analysis of the impacts of climate change on potential distribution of three larch (Larix) species in northeastern China. Chinese Journal of Plant Ecology, 2007, 31(5): 825-833] |
[28] | 吕振刚, 李文博, 黄选瑞, 等. 气候变化情景下基于潜在NPP的河北省华北落叶松生长适宜性. 林业科学, 2019, 55(11): 37-44 [Lyu Z-G, Li W-B, Huang X-R, et al. Larix principis-rupprechtii growth suitability based on potential NPP under climate change scenarios in Hebei Province. Scientia Silvae Sinicae, 2019, 55(11): 37-44] |
[29] | Amanda M, Nicholas CC, Richard HW. Soil water availability effects on the distribution of 20 tree species in western North America. Forest Ecology and Management, 2014, 313: 144-152 |
[30] | Brendan C, Steven J, Tim JB, et al. Global convergence in the vulnerability of forests to drought. Nature, 2012, 491: 752-755 |
[31] | 王艺, 丁贵杰. 马尾松菌根化苗木对干旱的生理响应及抗旱性评价. 应用生态学报, 2013, 24(3): 639-645 [Wang Y, Ding G-J. Physiological responses of mycorrhizal Pinus massoniana seedlings to drought stress and drought resistance evaluation. Chinese Journal of Applied Ecology, 2013, 24(3): 639-645] |
[1] | ZHAO Yi, LI Fuming, ZHU Jingkang, CHANG Chenlong, FENG Yonghan, LIANG Wenjun, WEI Xi. Effect of gap size on the regeneration in Larix principis-rupprechtii plantation [J]. Chinese Journal of Applied Ecology, 2023, 34(8): 2039-2046. |
[2] | XIE Pingping, ZHANG Boyi, DONG Yibo, LYU Pengcheng, DU Mingchao, ZHANG Xianliang. Differences in ecological resilience of radial growth between Larix principis-rupprechtii and Picea meyeri after drought [J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1779-1786. |
[3] | LAN Haochen, LIU Yanyan, ZHANG Yufang, KANG Yang. Spatiotemporal variation of drought in the Western Sichuan Plateau based on standardized precipitation evapotranspiration index [J]. Chinese Journal of Applied Ecology, 2023, 34(6): 1533-1540. |
[4] | YANG Xinguo, SONG Naiping, CHEN Lin, WANG Lei. Ecological causality between vegetation construction and habitat drought in arid areas [J]. Chinese Journal of Applied Ecology, 2023, 34(6): 1713-1720. |
[5] | Feng Yonghan, YAN Jue, GUO Yu, ZHAO Yi, DONG Yuan, LIANG Wenjun, WEI Xi, BI Huaxing. Effect of thinning intensity on natural regeneration of Larix principis-rupprechtii [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1169-1177. |
[6] | LI Junliang, WANG Shibo, LI Yajun, HAO Xingyu, ZONG Yuzheng, ZHANG Dongsheng, SHEN Jie, SHI Xinrui, LI Ping. Effects of elevated CO2 concentration on cell structure and stress resistance physiology of Setaria italica under drought stress [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1281-1289. |
[7] | REN Qianru, MAO Xiaoya, QI Xiaojun, LIU Jinxian, JIA Tong, WU Tiehang, CHAI Baofeng. Distribution patterns and driving mechanism of soil protozoan community at the different depths of Larix principis-chinensis forest in the Luya Mountain, China [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1395-1403. |
[8] | WU Yingming, HAN Lu, LIU Keyan, HU Xu, FU Zhaoqi, CHEN Lixin. Water source of Robinia pseudoacacia and Platycladus orientalis plantations under different soil moisture conditions in the Loess Plateau of Western Shanxi, China [J]. Chinese Journal of Applied Ecology, 2023, 34(3): 588-596. |
[9] | LIU Qing, WANG Yunxia, ZENG Yan, MAO Jirong, XU Xiaoyang, LIU Ying. Anatomical structure and physiological characteristics of Robinia pseudoacacia of different stand ages [J]. Chinese Journal of Applied Ecology, 2023, 34(12): 3256-3262. |
[10] | SHI Jia-mian, SONG Ge, LIU Shanshan, ZHENG Yong. Responses of arbuscular mycorrhizal fungal morphological traits and the diversity of spore-associated bacteria to simulated nitrogen deposition and drought in a Cunninghamia lanceolata plantation soil [J]. Chinese Journal of Applied Ecology, 2023, 34(12): 3291-3300. |
[11] | ZHAO Jiapei, GUO Enliang, WANG Yongfang, KANG Yao, GU Xiling. Ecological drought monitoring of Inner Mongolia vegetation growing season based on kernel temperature vegetation drought index (kTVDI). [J]. Chinese Journal of Applied Ecology, 2023, 34(11): 2929-2937. |
[12] | WANG Jing, FU Bingzhe, LI Shuxia, WANG Xing, SONG Wenxue, YE Yunong, HU Pengfei, WANG Tongrui. Effects of exogenous melatonin on growth and physiological characteristics of Agropyron mongolicum seedlings under drought stress [J]. Chinese Journal of Applied Ecology, 2023, 34(11): 2947-2957. |
[13] | WANG Heng, WANG Xiao-xue, JIA Jianheng, ZHANG Zihang, GUO Mingming. Responses of radial growth of Larix principis-rupprechtii to abrupt warming [J]. Chinese Journal of Applied Ecology, 2023, 34(10): 2629-2636. |
[14] | ZHAO Lei, JIN Haidi, CAO Xiaoyun, DENG Wenhui, DU Lingjuan. Physiological response to drought stress and drought resistance of six Helleborus orientlis cultivars [J]. Chinese Journal of Applied Ecology, 2023, 34(10): 2644-2654. |
[15] | ZHAO Lin-yu, LI Yang-yang. Effects of shading and drought on light-induced stomatal dynamics in Betula platyphylla seedlings [J]. Chinese Journal of Applied Ecology, 2022, 33(9): 2331-2338. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 176
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 377
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||