Chinese Journal of Applied Ecology ›› 2021, Vol. 32 ›› Issue (3): 1096-1104.doi: 10.13287/j.1001-9332.202103.005
• Original Articles • Previous Articles Next Articles
PAN Bo-gui1,2,3, MO Han-qian1,2,3, WANG Wei4, CAI Kun-zheng1,2,3, TIAN Ji-hui1,2,3, CAI Yi-xia1,2,3*
Received:
2020-09-26
Accepted:
2020-12-28
Online:
2021-03-15
Published:
2021-09-15
Contact:
* E-mail: caiyixia@scau.edu.cn
Supported by:
PAN Bo-gui, MO Han-qian, WANG Wei, CAI Kun-zheng, TIAN Ji-hui, CAI Yi-xia. Regulating effects of silicon on Cd-accumulation and stress-resistant responding in rice seedling[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 1096-1104.
[1] | Qian GR, Chen W, Lim TT, et al. In-situ stabilization of Pb, Zn, Cu, Cd and Ni in the multi-contaminated sediments with ferrihydrite and apatite composite additives. Journal of Hazardous Materials, 2009, 170: 1093-1100 |
[2] | Cui HB, Zhang SW, Li RY, et al. Leaching of Cu, Cd, Pb and phosphorus and their availability in the phosphate-amended contaminated soils under simulated acid rain. Environmental Science and Pollution Research,2017,24: 21128-21137 |
[3] | Xue DW, Jiang H, Deng XX, et al. Comparative proteomic analysis provides new insights into cadmium accumulation in rice grain under cadmium stress. Journal of Hazardous Materials, 2014, 280: 269-278 |
[4] | 张妍, 张磊, 程红, 等. 南方某矿区土壤镉污染及作物健康风险研究. 农业环境科学学报, 2020, 39(12): 2752-2761 [Zhang Y, Zhang L, Cheng H, et al. Soil cadmium pollution and crop health risks in a mining area of southern China. Journal of Agro-Environment Science, 2020, 39(12): 2752-2761] |
[5] | Peralta-Videa JR, Lopez ML, Narayan M, et al. The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. International Journal of Biochemistry and Cell Biology, 2009, 41: 1665-1677 |
[6] | Satarug S, Vesey DA, Gobe GC. Kidney cadmium toxi-city, diabetes and high blood pressure: The perfect storm. The Tohoku Journal of Experimental Medicine, 2017, 241: 65-87 |
[7] | Li HL, Pu P, Li XR, et al. Sulfur application reduces cadmium uptake in edible parts of pakchoi (Brassica chinensis L.) by cadmium chelation and vacuolar sequestration. Ecotoxicology and Environmental Safety, 2020, 194: 110402 |
[8] | Gao M, Zhou J, Liu HL, et al. Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Science of the Total Environment, 2018, 631-632: 1100-1108 |
[9] | Bashir A, Rizwan M, Rehman MZU, et al. Application of co-composted farm manure and biochar increased the wheat growth and decreased cadmium accumulation in plants under different water regimes. Chemosphere, 2020, 246: 125809 |
[10] | Tripathi P, Tripathi RDT, Singh RP, et al. Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defense system. Ecological Engineering, 2013, 52: 96-103 |
[11] | 文晓慧, 蔡昆争, 葛少彬, 等. 硅对镉和锌复合胁迫下水稻幼苗生长及重金属吸收的影响. 华北农学报, 2011, 26(5): 153-158 [Wen X-H, Cai K-Z, Ge S-B, et al. Effects of silicon on plant growth and heavy metal absorption in rice seedlings under Cd and Zn stress. Acta Agriculturae Boreali-Sinica, 2011, 26(5): 153-158] |
[12] | 张世浩, 蔡昆争, 王维, 等. 施硅对高浓度Cd污染土壤中水稻植株Cd积累与分配的调控. 环境科学研究, 2016, 29(7): 1032-1040 [Zhang S-H, Cai K-Z, Wang W, et al. Regulation of silicon application on cadmium accumulation and translocation in rice (Oryza sativa L.) grown under high concentration cadmium-polluted soil. Research of Environmental Sciences, 2016, 29(7): 1032-1040] |
[13] | Huang F, Wen XH, Cai YX, et al. Silicon-mediated enhancement of heavy metal tolerance in rice at different growth stages. International Journal of Environmental Research and Public Health, 2018, 15: 2193 |
[14] | Ma JF, Yamaji N. Silicon uptake and accumulation in higher plants. Trends in Plant Science, 2006, 11: 392-397 |
[15] | Gong ZZ, Xiong LM, Shi HZ, et al. Plant abiotic stress response and nutrient use efficiency. Science China: Life Sciences, 2020, 63: 635-674 |
[16] | 连兆煌. 无土栽培原理与技术. 北京: 中国农业出版社, 1994: 26-27 [Lian Z-H. Principles and Techniques of Hydroponics. Beijing: China Agriculture Press, 1994: 26-27] |
[17] | 焦欣田, 薛卫杰, 赵艳玲, 等. 硅锌互作对水稻幼苗镉吸收转运特性的影响. 农业环境科学学报, 2018, 37(11): 2491-2497 [Jiao X-T, Xue W-J, Zhao Y-L, et al. Effects of silicon and zinc interaction on the uptake of cadmium in rice seedlings. Journal of Agro-Environment Science, 2018, 37(11): 2491-2497] |
[18] | 国家质量技术监督管理局. 生活饮用水卫生标准 (GB 5749—2006). 北京: 中国标准出版社, 2006 [State Bureau of Quality and Technical Supervision of China. Sanitary Standard of Drinking Water (GB 5749-2006). Beijing: China Standards Press, 2006] |
[19] | 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000 [Bao S-D. Soil and Agrochemistry Analysis. Beijing: China Agriculture Press, 2000] |
[20] | 戴伟民, 张克勤, 段彬伍, 等. 测定水稻硅含量的一种简易方法. 中国水稻科学, 2005, 19(5): 460-462 [Dai W-M, Zhang K-Q, Duan B-W, et al. Rapid determination of silicon content in rice (Oryza sativa L.). Chinese Journal of Rice Science, 2005, 19(5): 460-462] |
[21] | 徐朗莱, 叶茂炳. 过氧化物酶活力连续记录测定法. 南京农业大学学报, 1989, 12(3): 82-83 [Xu L-L, Ye M-B. Continuous recording of peroxidase activity. Journal of Nanjing Agricultural University, 1989, 12(3): 82-83] |
[22] | 王爱国, 陈学敏, 杨克敌, 等. 甲基汞对大鼠脑组织脂质过氧化作用的影响. 现代预防医学, 1999, 25(2): 129-130 [Wang A-G, Chen X-M, Yang K-D, et al. Effect of methylmercury on lipid peroxidation in brain tissue of rats. Modern Preventive Medicine, 1999, 25(2): 129-130] |
[23] | 李鹏, 葛滢, 吴龙华, 等. 两种籽粒镉含量不同水稻的镉吸收转运及其生理效应差异初探. 中国水稻科学, 2011, 25(3): 291-296 [Li P, Ge Y, Wu L-H, et al. Uptake and translocation of cadmium and its physiological effects in two rice cultivars differed in grain cadmium concentration. Chinese Journal of Rice Science, 2011, 25(3): 291-296] |
[24] | Muhammad S, Camille D, Sana K, et al. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of Hazardous Materials, 2017, 325: 36-58 |
[25] | 耿杰, 宋明阳, 李军, 等. 硅对分蘖期不同品种水稻镉吸收积累的影响. 土壤通报, 2018, 49(3): 697-704 [Geng J, Song M-Y, Li J, et al. Effects of silicon fertilizer on cadmium uptake and accumulation in diffe-rent rice varieties at tillering stage. Chinese Journal of Soil Science, 2018, 49(3): 697-704] |
[26] | 刘彩凤, 史刚荣, 余如刚, 等. 硅缓解植物镉毒害的生理生态机制. 生态学报, 2017, 37(23): 7799-7810 [Liu C-F, Shi G-R, Yu R-G, et al. Eco-physiological mechanisms of silicon-induced alleviation of cadmium toxicity in plants: A review. Acta Ecologica Sinica, 2017, 37(23): 7799-7810] |
[27] | Rizwan M, Meunier JD, Davidian JC, et al. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environmental Science and Pollution Research, 2016, 23: 1414-1427 |
[28] | Sui FF, Wang JB, Zuo J, et al. Effect of amendment of biochar supplemented with Si on Cd mobility and rice uptake over three rice growing seasons in an acidic Cd-tainted paddy from central South China. Science of the Total Environment, 2020, 709: 136101 |
[29] | 龙思斯, 杨益新, 宋正国, 等. 三种类型阻控剂对不同品种水稻富集镉的影响. 农业资源与环境学报, 2016, 33(5): 459-465 [Long S-S, Yang Y-X, Song Z-G, et al. Effects of three inhibitors on the accumulation of cadmium in rice (Oryza sativa L.). Journal of Agro-Environment Science, 2016, 33(5): 459-465] |
[30] | 章明奎, 倪中应, 沈倩. 农作物重金属污染的生理阻控研究进展. 环境污染与防治, 2017, 39(1): 96-101 [Zhang M-K, Ni Z-Y, Shen Q. Research progress on physiological control of heavy metal pollution in crops. Environmental Pollution and Control, 2017, 39(1): 96-101] |
[31] | Cakmak I, Welch RM, Hart J, et al. Uptake and retranslocation of leaf-applied cadmium (109Cd) in diploid, tetraploid and hexaploid wheats. Journal of Experimental Botany, 2000, 51: 221-226 |
[32] | 周志波, 易亚科, 陈光辉. 水稻Cd吸收、转运机理研究进展. 作物杂志, 2017(1): 14-19 [Zhou Z-B, Yi Y-K, Chen G-H. Advances in Cd uptake and transport in rice. Crops, 2017(1): 14-19] |
[33] | 张参俊, 尹洁, 张长波, 等. 非选择性阳离子通道对水稻幼苗镉吸收转运特性的影响. 农业环境科学学报, 2015, 34(6): 1028-1033 [Zhang C-J, Yin J, Zhang C-B, et al. Effects of nonselective cation channels on accumulation and transfer of Cd in rice seedlings. Journal of Agro-Environment Science, 2015, 34(6): 1028-1033] |
[34] | Zou R, Wang L, Li YC, et al. Cadmium absorption and translocation of amaranth (Amaranthus mangostanus L.) affected by iron deficiency. Environmental Pollution, 2020, 256: 113410 |
[35] | Qin SY, Liu HG, Nie ZJ, et al. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review. Pedosphere, 2020, 30: 168-180 |
[36] | 刘媛, 马文超, 张雯, 等. 镉胁迫对秋华柳根系活力及其Ca、Mg、Mn、Zn、Fe积累的影响. 应用生态学报, 2016, 27(4): 1109-1115 [Liu Y, Ma W-C, Zhang W, et al. Effect of cadmium stress on root vigor and accumulation of elements Ca, Mg, Mn, Zn, Fe in Salix variegate. Chinese Journal of Applied Ecology, 2016, 27(4): 1109-1115] |
[37] | Wang MY, Chen AK, Wong MH, et al. Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varie-ties with different rates of radial oxygen loss. Environmental Pollution, 2011, 159: 1730-1736 |
[38] | 徐莜, 杨益新, 李文华, 等. 锰离子浓度及其转运通道对水稻幼苗镉吸收转运特性的影响. 农业环境科学学报, 2016, 35(8): 1429-1435 [Xu Y, Yang Y-X, Li W-H, et al. Effects of manganese concentrations and transporters on uptake and translocation of cadmium in rice. Journal of Agro-Environment Science, 2016, 35(8): 1429-1435] |
[39] | Liang YC, Chen Q, Liu Q, et al. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology, 2003, 160: 1157-1164 |
[40] | 李天哲, 陈爱婷, 李彩, 等. 镉胁迫下硅对水稻幼苗生长与生理响应的影响.农业环境科学学报, 2018, 37(6): 1072-1078 [Li T-Z, Chen A-T, Li C, et al. Effects of silicon on growth and physiological responses of rice seedlings under cadmium stress. Journal of Agro-Environment Science, 2018, 37(6): 1072-1078] |
[1] | LYU Jiajia, CHU Zheng, LI Baichao, GONG Lijuan, ZHOU Baocai, LIU Dan, WANG Dongni, JIANG Lixia. Construction of yield loss indicators for cold vortex, light-temperature-water combined stress during the flowering period of rice in Northeast China [J]. Chinese Journal of Applied Ecology, 2024, 35(3): 731-738. |
[2] | LIN Wen-xiong, WENG Peiying, LIN Wenfang, SHAO Caihong, GUO Chunlin, LI Zhong, CHEN Hongfei, CHEN Ting. Research status and prospect of ratoon rice in China under mechanically harvested condition [J]. Chinese Journal of Applied Ecology, 2024, 35(3): 827-836. |
[3] | LIU Jiani, ZHAI Shuijing, QIU Siting, YU Xinhui, WANG Sai. Silicon composition and stoichiometric ratios with other nutrients in the lower Minjiang River, Southeast China [J]. Chinese Journal of Applied Ecology, 2023, 34(8): 2205-2214. |
[4] | LOU Yunsheng, YU Yujie, LIU Yan, YANG Huilin, ZHOU Dongxue. Effects of silicate application on rice growth, yield and quality under nighttime warming in southern China [J]. Chinese Journal of Applied Ecology, 2023, 34(4): 985-992. |
[5] | NING Chuanchuan, CHEN Yuegui, LIU Rui, LI Tongxin, CHEN Hailang, TIAN Jihui, CAI Kunzheng. Effects of N fertilizer reduction combined with straw biochar application on the yield, Si, and N nutrition of double-cropping rice [J]. Chinese Journal of Applied Ecology, 2023, 34(4): 993-1001. |
[6] | SHI Li-hong, TANG Hai-ming, WEN Li, CHENG Kai-kai, LI Chao, LI Wei-yan, XIAO Xiao-ping. Effects of different long-term fertilization patterns on net carbon sink effect and economic benefits in double cropping rice paddy ecosystem in southern China [J]. Chinese Journal of Applied Ecology, 2022, 33(9): 2450-2456. |
[7] | HU Wang, ZHAO Hang, ZHOU Xuan, WANG Yi-zhe, ZHANG Han-feng, ZHANG Yu-ping. Effect of reed-biochar application on ammonia volatilization from different types of soils [J]. Chinese Journal of Applied Ecology, 2022, 33(7): 1919-1926. |
[8] | MIAO Jing, LIU Feng, YAN Fa-jun, LI Xian, DONG Jun, ZHU Yong-an, WANG Xin-jun, DONG Xiao-liang. Analysis of food sources of Eriocheir sinensis in rice-crab integrated ecosystem based on stable isotopes in saline-alkali land of the Yellow River Delta [J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1489-1496. |
[9] | LIN Zhi-min, LI Zhou, WENG Pei-ying, WU Dong-qing, ZOU Jing-nan, PANG Zi-qin, LIN Wen-xiong. Field greenhouse gas emission characteristics and carbon footprint of ratoon rice [J]. Chinese Journal of Applied Ecology, 2022, 33(5): 1340-1351. |
[10] | WANG Li-min, HUANG Dong-feng, ZHANG Bing-ya, PAN Zhu-cai. Differences in uptake, utilization and loss of nitrogen and phosphorus in a Chinese double rice cropping system under different irrigation and fertilization managements [J]. Chinese Journal of Applied Ecology, 2022, 33(4): 1037-1044. |
[11] | LIU Cheng-jing, JIAO Yuan-mei, XU Qiu-e, YANG Yan-fen, DING Yin-ping, LIU Zhi-lin. Influence of landscape pattern on elevation effect of δ18O in surface water in Hani Terrace [J]. Chinese Journal of Applied Ecology, 2022, 33(4): 1083-1090. |
[12] | SHEN Jie, LYU Teng-fei, WANG Zhi-qiang, WANG Zhong-lin, LIN Dan, LI Yu, YANG Zhi-yuan, SUN Yong-jian, MA Jun. Effects of planting methods on the utilization of temperature and sunshine resources and yield of rice under cabbage/rape-paddy cropping system. [J]. Chinese Journal of Applied Ecology, 2022, 33(2): 405-414. |
[13] | SHI Li-hong, TANG Hai-ming, SUN Geng, SUN Mei, LONG Ze-dong, WEN Li, CHENG Kai-kai, LUO Zun-chang. Impacts of long-term different fertilization managements on soil acid hydrolysable organic nitrogen fractions in double-cropping rice field [J]. Chinese Journal of Applied Ecology, 2022, 33(12): 3345-3351. |
[14] | WANG Yong-mo, DENG Jia-xin, ZHANG Jin-xin, JIA Rui-zong. Accumulation of Cry proteins in soil released from Bt rice after planting for multiple years [J]. Chinese Journal of Applied Ecology, 2022, 33(1): 119-125. |
[15] | GUO Xiang, ZHAO Jin-peng, WANG Ru-lin, LI Xu-yi, WANG Ming-tian. Continuous-rain hazard of transplanting and direct-sowing rice in Sichuan Basin, China [J]. Chinese Journal of Applied Ecology, 2021, 32(9): 3213-3222. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 729
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 510
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||