Chinese Journal of Applied Ecology ›› 2021, Vol. 32 ›› Issue (6): 2129-2137.doi: 10.13287/j.1001-9332.202106.011
• Original Articles • Previous Articles Next Articles
SUN Qian-qian1, LIU Chao1,2 *, ZHENG Bei-jun3,4
Received:
2020-11-15
Accepted:
2021-02-08
Published:
2021-12-15
Contact:
* E-mail: chaoliu0202@gmail.com
Supported by:
SUN Qian-qian, LIU Chao, ZHENG Bei-jun. Vegetation cover change and its response to climate change on the Loess Plateau, Northwest China based on ICEEMDAN method[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 2129-2137.
[1] Tucker CJ, Slayback DA, Pinzon JE, et al. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. International Journal of Biometeorology, 2001, 45: 184-190 [2] 信忠保, 许炯心, 郑伟. 气候变化和人类活动对黄土高原植被覆盖变化的影响. 中国科学(D辑: 地球科学), 2007, 37(11): 1504-1514 [Xin Z-B, Xu J-X, Zheng W. The impact of climate change and human activities on vegetation cover change in the Loess Plateau. Science in China (Series D: Earth Sciences), 2007, 37(11): 1504-1514] [3] 秦格霞, 吴静, 李纯斌, 等.中国北方草地植被物候变化及其对气候变化的响应. 应用生态学报, 2019, 30(12): 4099-4107 [Qin G-X, Wu J, Li C-B, et al. Grassland vegetation phenology change and its response to climate changes in North China. Chinese Journal of Applied Ecology, 2019, 30(12): 4099-4107] [4] Wang J, Price KP, Rich PM. Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. International Journal of Remote Sen-sing, 2001, 22: 3827-3844 [5] Pettorelli N, Vik JO, Mysterud A, et al. Using the satel-lite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 2005, 20: 503-510 [6] Wardlow BD, Egbert SL. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the US Central Great Plains. Remote Sensing of Environment, 2008, 112: 1096-1116 [7] Xie B, Jia X, Qin Z, et al. Vegetation dynamics and climate change on the Loess Plateau, China: 1982-2011. Regional Environmental Change, 2016, 16: 1583-1594 [8] 张翀, 任志远, 李小燕. 黄土高原植被对气温和降水的响应. 中国农业科学, 2012, 45(20): 4205-4215 [Zhang C, Ren Z-Y, Li X-Y. Research on vegetation response to temperature and precipitation in Loess Pla-teau. Scientia Agricultura Sinica, 2012, 45(20): 4205-4215] [9] 李本纲, 陶澍. AVHRR NDVI与气候因子的相关分析. 生态学报, 2000, 20(5): 898-902 [Li B-G, Tao S. Correlation between AVHRR NDVI and climate factors. Acta Ecologica Sinica, 2000, 20(5): 898-902] [10] 刘可, 杜灵通, 侯静, 等. 近30年中国陆地生态系统NDVI时空变化特征. 生态学报, 2018, 38(6): 1885-1896 [Liu K, Du L-T, Hou J, et al. Spatiotemporal variations of NDVI in terrestrial ecosystems in China from 1982-2012. Acta Ecologica Sinica, 2018, 38(6): 1885-1896] [11] Tucker CJ, Pinzon JE, Brown ME, et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 2005, 26: 4485-4498 [12] Huang NE, Shen Z, Long SR, et al. The empirical mode decomposition and the Hilbert spectrum for nonli-near and non-stationary time series analysis. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454: 903-995 [13] Wu Z, Huang NE. A study of the characteristics of white noise using the empirical mode decomposition method. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2004, 460: 1597-1611 [14] Chen T, Xie Y, Liu C, et al. Trend analysis of relationship between primary productivity, precipitation and temperature in Inner Mongolia. ISPRS International Journal of Geo-Information, 2018, 7: 214 [15] Kong Y, Meng Y, Li W, et al. Satellite image time series decomposition based on EEMD. Remote Sensing, 2015, 7: 15583-15604 [16] Wu Z, Huang NE, Long SR, et al. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104: 14889-14894 [17] Colominas MA, Schlotthauer G, Torres ME. Improved complete ensemble EMD: A suitable tool for biomedical signal processing. Biomedical Signal Processing and Control, 2014, 14: 19-29 [18] 刘志红, 郭伟玲, 杨勤科, 等. 近20年黄土高原不同地貌类型区植被覆盖变化及原因分析. 中国水土保持科学, 2011, 9(1): 16-23 [Liu Z-H, Guo W-L, Yang Q-K, et al. Vegetation cover changes and their relationship with rainfall in different physiognomy type areas of Loess Plateau. Science of Soil and Water Conservation, 2011, 9(1): 16-23] [19] Holben BN. Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing, 1986, 7: 1417-1434 [20] 谢宝妮, 秦占飞, 王洋, 等. 基于遥感的黄土高原植被物候监测及其对气候变化的响应. 农业工程学报, 2015, 31(15): 153-160 [Xie B-N, Qin Z-F, Wang Y, et al. Monitoring vegetation phenology and their response to climate change on Chinese Loess Plateau based on remote sensing. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(15): 153-160] [21] Wu Z, Huang NE. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis, 2009, 1: 1-41 [22] Hawinkel P, Swinnen E, Lhermitte S, et al. A time series processing tool to extract climate-driven interannual vegetation dynamics using Ensemble Empirical Mode Decomposition (EEMD). Remote Sensing of Environment, 2015, 169: 375-389 [23] Mao D, Wang Z, Luo L, et al. Integrating AVHRR and MODIS data to monitor NDVI changes and their: Relationships with climatic parameters in Northeast China. International Journal of Applied Earth Observation and Geoinformation, 2012, 18: 528-536 [24] 张煦, 马驿, 郑雯, 等. 基于时序MODIS-NDVI的油菜种植面积变化趋势分析——以江汉平原为例. 长江流域资源与环境, 2016, 25(3): 412-419 [Zhang X, Ma Y, Zheng W, et al. Variation trend of rape cultivation area based on MODIS-NDVI time series data: A case in Jianghan Plain. Resources and Environment in the Yangtze Basin, 2016, 25(3): 412-419] [25] 赵安周, 刘宪锋, 朱秀芳, 等. 2000—2014年黄土高原植被覆盖时空变化特征及其归因. 中国环境科学, 2016, 36(5): 290-300 [Zhao A-Z, Liu X-F, Zhu X-F, et al. Spatiotemporal analyses and associated driving forces of vegetation coverage change in the Loess Pla-teau. China Environmental Science, 2016, 36(5): 290-300] [26] 谢宝妮, 秦占飞, 王洋, 等. 黄土高原植被净初级生产力时空变化及其影响因素. 农业工程学报, 2014, 30(11): 244-253 [Xie B-N, Qin Z-F, Wang Y, et al. Spatial and temporal variation in terrestrial net primary productivity on Chinese Loess Plateau and its influential factors. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(11): 244-253] [27] 唐亮, 赵忠明, 唐娉. 从NDVI序列检测植被“绿化”或“褐化”变化趋势的新方法. 国土资源遥感, 2019, 31(2): 89-95 [Tang L, Zhao Z-M, Tang P. A new method for detection “greening” or “browning” change trend in vegetation from NDVI sequences. Remote Sen-sing for Land & Resources, 2019, 31(2): 89-95] [28] 张洪芬, 韩涛, 黄斌. 甘肃黄土高原春季气温变化对物候的影响. 资源科学, 2007, 29(6): 10-15 [Zhang H-F, Han T, Huang B. Influence of air temperature change on phonology spectrum in spring season in the Loess Plateau of Gansu. Resources Science, 2007, 29(6): 10-15] [29] 孙艳玲, 郭鹏. 1982—2006年华北植被覆盖变化及其与气候变化的关系. 生态环境学报, 2012, 21(1): 7-12 [Sun Y-L, Guo P. Variation of vegetation cove- rage and its relationship with climate change in north China from 1982 to 2006. Ecology and Environmental Sciences, 2012, 21(1): 7-12] [30] 马鹏里, 郭江勇. 气候变暖对西峰黄土高原物候期的影响. 干旱区研究, 2007, 24(5): 675-678 [Ma P-L, Guo J-Y. Effect of climate warming on phenophase in Xifeng in the Loess Plateau. Arid Zone Research, 2007, 24(5): 675-678] [31] Jobbágy EG, Sala OE, Paruelo JM. Patterns and controls of primary production in the Patagonian steppe: A remote sensing approach. Ecology, 2002, 83: 307-319 [32] 赵安周, 张安兵, 刘海新, 等. 退耕还林(草)工程实施前后黄土高原植被覆盖时空变化分析. 自然资源学报, 2017, 32(3): 449-460 [Zhao A-Z, Zhang A-B, Liu H-X, et al. Spatiotemporal variation of vegetation coverage before and after implementation of Grain for Green Project in the Loess Plateau. Journal of Natural Resources, 2017, 32(3): 449-460] |
[1] | GAN Wenjing, MO Shangxuan, ZHANG Jianhong, SONG Xianwei, XIAN Jinmei, YANG Lu, NONG Haiqin. Water conservation pattern of Fangcheng River Basin in Beibu Gulf and its response to precipitation [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 407-414. |
[2] | MA Xiaoming, LI Dan, LEI Jia, YU Jie, WANG Nan, HOU Xianqing, WEI Na, LI Rong. Influence of tillage methods combined with mulching on soil physical properties and potato yield in dry farming area under different precipitation years [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 447-456. |
[3] | JI Yongkang, MA Nan, ZHANG Hui, LI Cuihuan, MA Yuandan, WU Qiqian, LI Yan. Effect of seasonal distribution in precipitation on soil nitrogen mineralization in a subtropical forest [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 186-194. |
[4] | HONG Xinqian, SUN Tao, CHEN Liding. Dynamic changes and driving factors of land surface phenology under the background of urbanization [J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2436-2444. |
[5] | CHEN Zhenxiong, ZHANG Chao, LI Quan, SONG Xinzhang, SHI Man. Mechanism underlying temperature sensitivity of soil organic carbon decomposition: A review [J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2575-2584. |
[6] | WEI Haoyan, LU Yanwei, LI Min, LI Peiyue, CHENG Wenqing, SI Bingcheng. Anomalous stable hydrogen-oxygen isotope characteristics and water vapor sources of autumn precipitation in the Weihe River basin, Northwest China [J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1737-1744. |
[7] | DAI Zecheng, LIU Yuexiu, DANG Ning, WANG Zhirui, CAI Jiangping, ZHANG Yuge, SONG Yongbo, LI Hui, JIANG Yong. Short-term legacy effects of long-term nitrogen and water addition on soil chemical properties and micro-bial characteristics in a temperate grassland [J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1834-1844. |
[8] | YANG Hao, WANG Wenlong, LOU Yibao, FENG Lanqian, ZHU Ya’nan. Infiltration and shear strength characteristics of gully heads soil of typical vegetation on the gullied Loess Plateau, Northwest China [J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1862-1870. |
[9] | ZHAO Chengyu, ZHANG Shuyi, ZHU Hongkai, GU Xuan, LIU Min. Differences in the evolution of urban and rural surface thermal environment and their responses to urban renewal in Shanghai, China [J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1923-1931. |
[10] | WEI Peiyao, PAN Song, PENG Deliang, ZHANG Feng, CHEN Zhijie, ZHANG Shulian, LI Yingmei. Effect of low-temperature stress on the survival of Meloidogyne incognita and its application in greenhouse of northern China [J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1981-1987. |
[11] | GUO Rong, WU Xudong, WANG Zhanjun, JIANG Qi, YU Hongqian, HE Jing, LIU Wenjuan, MA Kun. Responses of soil bacterial and fungal communities to altered precipitation in a desert steppe [J]. Chinese Journal of Applied Ecology, 2023, 34(6): 1500-1508. |
[12] | LAN Haochen, LIU Yanyan, ZHANG Yufang, KANG Yang. Spatiotemporal variation of drought in the Western Sichuan Plateau based on standardized precipitation evapotranspiration index [J]. Chinese Journal of Applied Ecology, 2023, 34(6): 1533-1540. |
[13] | WEI Zhaowei, CHEN Ruogu, YIN Nan, KE Haonan, SHA Yaqing, ZHAO Junchi, LI Qi, HU Zhenghua. Response of rice resistance based on the validation of rice blast to elevated CO2 concentration and temperature [J]. Chinese Journal of Applied Ecology, 2023, 34(6): 1563-1571. |
[14] | WANG Fang, LU Yaoshun, ZHANG Zhaochen, CHEN Lin, YANG Yongchuan, ZHANG Hongwei, WANG Xiaoran, SHU Li, SHANG Xiaofan, LIU Pengcheng, YANG Qingpei, ZHANG Jian. Altitudinal variations and seasonal dynamics of near-surface and soil temperatures in subtropical forests of Mt. Guanshan, Jiangxi Province, China [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1161-1168. |
[15] | TIAN Ning, HUANG Xuemei, CHEN Longchi, HUANG Ke, TAO Xiao. Effects of liming on soil respiration and its sensitivity to temperature in Cunninghamia lanceolata plantations [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1194-1202. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 35
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 340
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||