Chinese Journal of Applied Ecology ›› 2024, Vol. 35 ›› Issue (3): 678-686.doi: 10.13287/j.1001-9332.202403.030
Previous Articles Next Articles
XIE Lingling, WANG Shaojun*, XIAO Bo, WANG Zhengjun, GUO Zhipeng, GUO Xiaofei, LUO shuang, LI Rui, XIA Jiahui, LAN Mengjie, YANG Shengqiu
Received:
2023-07-14
Revised:
2024-01-19
Online:
2024-03-18
Published:
2024-06-18
XIE Lingling, WANG Shaojun, XIAO Bo, WANG Zhengjun, GUO Zhipeng, GUO Xiaofei, LUO shuang, LI Rui, XIA Jiahui, LAN Mengjie, YANG Shengqiu. Effects of ant nests on soil CH4 emissions from Syzygium oblatum communities of a secondary tropical forest[J]. Chinese Journal of Applied Ecology, 2024, 35(3): 678-686.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202403.030
[1] Knittel K, Boetius A. Anaerobic oxidation of methane: Progress with an unknown process. Annual Review of Microbiology, 2009, 63: 311-334 [2] 吕妍, 段卜月, 李栋. 温度-浓度耦合变量下甲烷吸收谱线关联分析. 热科学与技术, 2021, 20(3): 297-302 [3] 何姗, 刘娟, 姜培坤, 等. 全球变化对森林土壤甲烷吸收的影响及其机制研究进展. 应用生态学报, 2019, 30(2): 677-684 [4] 张坚超, 徐镱钦, 陆雅海. 陆地生态系统甲烷产生和氧化过程的微生物机理. 生态学报, 2015, 35(20): 6592-6603 [5] Hansen JE, Lacis AA. Sun and dust versus greenhouse gases: An assessment of their relative roles in global climate change. Nature, 1990, 346: 713-719 [6] 蔡元锋, 贾仲君. 土壤大气甲烷氧化菌研究进展. 微生物学报, 2014, 54(8): 841-853 [7] Styrsky JD, Eubanks MD. Ecological consequences of interactions between ants and honeydew-producing insects. Proceedings: Biological Sciences, 2007, 274: 151-164 [8] Heil M, Mckey D. Protective ant-plant interactions as model systems in ecological and evolutionary research. Annual Review of Ecology, Evolution, and Systematics, 2003, 34: 425-553 [9] Sanders D, Veen FJFV. Ecosystem engineering and predation: the multi-trophic impact of two ant species. Journal of Animal Ecology, 2011, 80: 569-576 [10] 左倩倩, 王邵军, 王平, 等. 蚂蚁筑巢对西双版纳热带森林土壤有机氮矿化的影响. 生态学报, 2021, 41(18): 7339-7347 [11] Jílková V, Cajthaml T, Frouz J. Respiration in wood ant (Formica aquilonia) nests as affected by altitudinal and seasonal changes in temperature. Soil Biology & Biochemistry, 2015, 86: 50-57 [12] Jílková V, Tomáš P, Martina S, et al. Methane and carbon dioxide flux in the profile of wood ant (Formica aquilonia) nests and the surrounding forest floor during a laboratory incubation. FEMS Microbiology Ecology, 2016, 92: fiw141 [13] Hopcroft PO, Valdes P, O’Connor FM, et al. Understanding the glacial methane cycle. Nature Communications, 2017, 8: 14383 [14] Flessa H, Beese F. Effects of sugarbeet residues on soil redox potential and nitrous oxide emission. Soil Science Society of America, 1995, 59: 1044-1051 [15] Maurer D, Kolb S, Haumaier L, et al. Inhibition of atmospheric methane oxidation by monoterpenes in Norway spruce and European beech soils. Soil Biology & Biochemistry, 2008, 40: 3014-3020 [16] Wu HT, Lu XG, Wu DH, et al. Ant mounds alter spatial and temporal patterns of CO2, CH4 and N2O emissions from a marsh soil. Soil Biology & Biochemistry, 2013, 57: 884-891 [17] Wang S, Wang H, Li J, et al. Ants can exert a diverse effect on soil carbon and nitrogen pools in a Xishuangbanna tropical forest. Soil Biology & Biochemistry, 2017, 113: 45-52 [18] Wang S, Li J, Zhang Z, et al. The contributions of underground-nesting ants to CO2 emission from tropical forest soils vary with species. Science of the Total Environment, 2018, 630: 1095-1102 [19] 李霁航, 王邵军, 王红, 等. 蚂蚁筑巢对高檐蒲桃热带森林群落土壤呼吸的影响. 生态学报, 2018, 38(17): 6033-6042 [20] 张昆凤, 王邵军, 王平, 等. 蚂蚁筑巢对热带次生林土壤N2O排放季节动态的影响. 应用生态学报, 2023, 34(5): 1218-1224 [21] 张旭, 牛艳萍. 油浴加热法测定土壤样品中有机碳. 黑龙江科技信息, 2014(10): 77 [22] 周桦, 宇万太, 马强. 氯仿薰蒸浸提法测定土壤微生物量碳的改进. 土壤通报, 2009, 40(1): 154-157 [23] 周伟, 吴红慧, 张运龙, 等. 土壤活性有机碳测定方法的改良. 土壤通报, 2019, 50(1): 70-75 [24] 赵林林, 吴志祥, 孙瑞. 土壤有机碳分类与测定方法的研究概述. 热带农业工程, 2021, 45(3): 154-161 [25] 李世清, 李生秀. 土壤微生物体氮测定方法的研究. 植物营养与肥料学报, 2000, 6(1): 75-83 [26] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000 [27] Zhu CG, Zhang JY, Tang Y P, et al. Diversity of methanogenic archaea in a biogas reactor fed with swine feces as the mono-substrate by mcrA analysis. Microbiological Research, 2011, 166: 27-35 [28] Deng YC, Liu YQ, Dumont M, et al. Salinity affects the composition of the aerobic methanotroph community in alkaline lake sediments from the Tibetan Plateau. Microbial Ecology, 2017, 73: 101-110 [29] 杨晶晶. 亚热带4种典型森林生态系统地表甲烷通量研究. 硕士论文. 长沙: 中南林业科技大学, 2012 [30] 魏华. 温带落叶阔叶林和热带山地雨林土壤温室气体排放规律及其影响因子. 博士论文. 陕西杨凌: 西北农林科技大学, 2018 [31] Davidson EA, Françoise YI, Nepstad DC. Effects of an experimental drought on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Global Change Biology, 2004, 10: 718-730 [32] 卢昌义, 叶勇, 黄玉山, 等. 海南岛东寨港红树林群落甲烷通量研究. 植物生态学报, 2000, 24(1): 87-90 [33] Hu M, Sardans J, Yang X, et al. Patterns and environmental drivers of greenhouse gas fluxes in the coastal wetlands of China: A systematic review and synthesis. Environmental Research, 2020, 186: 109576 [34] Cammeraat ELH, Risch AC. The impact of ants on mineral soil properties and processes at different spatial scales. Journal of Applied Entomology, 2010, 132: 285-294 [35] 白贞智. 热带山地雨林土壤 N2O, CH4通量及其对养分添加的响应. 硕士论文. 杨凌: 西北农林科技大学, 2014 [36] 严玉平. 西双版纳热带季节雨林、橡胶林土壤CH4、N2O通量及树干呼吸研究. 硕士论文. 西双版纳: 中国科学院西双版纳热带植物园, 2006 [37] 贾高辉, 许全, 杨怀, 等. 尖峰岭热带山地雨林林窗土壤甲烷通量研究. 森林与环境学报, 2020, 40(2): 126-132 [38] Czepiel PM, Crill PM, Harriss RC. Environmental factors influencing the variability of methane oxidation in temperate zone soils. Journal of Geophysical Research Atmospheres, 1995, 100: 9359-9364 [39] 沙晨燕. 季节性人工河滨湿地甲烷排放. 生态环境学报, 2012, 21(7): 1271-1276 [40] Jones SP, Diem T, Quispe LPH, et al. Drivers of atmospheric methane uptake by montane forest soils in the southern Peruvian Andes. Biogeosciences, 2016, 13: 4151-4165 [41] Watanabe T, Kimura M, Asakawa S. Community structure of methanogenic archaea in paddy field soil under double cropping (rice-wheat). Soil Biology & Biochemistry, 2006, 38: 1264-1274 [42] Tate KR. Soil methane oxidation and land-use change: From process to mitigation. Soil Biology & Biochemistry, 2015, 80: 260-272 [43] Gu X , Zhou X , Bu X, et al. Soil extractable organic C and N contents, methanotrophic activity under warming and degradation in a Tibetan alpine meadow. Agriculture, Ecosystems & Environment, 2019, 278: 6-14 [44] 宋长青, 吴金水, 陆雅海. 中国土壤微生物学研究10年回顾. 地球科学进展, 2013, 28(10): 1087-1105 [45] Folgarait PJ, Perelman S, Gorosito N, et al. Effects of Camponotus punctulatusants on plant community composition and soil properties across land-use histories. Plant Ecology, 2002, 163: 1-13 [46] 张坚超, 徐镱钦, 陆雅海. 陆地生态系统甲烷产生和氧化过程的微生物机理. 生态学报, 2015, 35(20): 6592-6603 [47] Wolf K, Flessa H, Veldkamp E. Atmospheric methane uptake by tropical montane forest soils and the contribution of organic layers. Biogeochemistry, 2012, 111: 469-483 [48] 孟伟庆, 吴绽蕾, 王中良. 湿地生态系统碳汇与碳源过程的控制因子和临界条件. 生态环境学报, 2011, 20(8-9): 1359-1366 [49] 刘实, 王传宽, 许飞. 4种温带森林非生长季土壤二氧化碳、甲烷和氧化亚氮通量. 生态学报, 2010, 30(15): 4075-4084 [50] 杨析, 邵明安, 李同川, 等. 黄土高原北部日本弓背蚁巢穴结构特征及其影响因素. 土壤学报, 2018, 55(4): 868-878 [51] 李君怡, 席毅, 赵俊福. 土壤湿度对中国南部热带森林土壤甲烷吸收的影响. 生态学报, 2022, 42(12): 4978-4987 [52] 庄静静, 张劲松, 孟平, 等. 非生长季刺槐林土壤 CH4通量的变化特征及其影响因子. 林业科学研究, 2016, 29(2): 274-282 [53] Rowlings DW, Grace PR, Kiese R, et al. Environmental factors controlling temporal and spatial variability in the soil-atmosphere exchange of CO2, CH4 and N2O from an Australian subtropical rainforest. Global Change Biology, 2012, 18: 726-738 [54] Cammeraat LH, Willott SJ, Compton SG, et al. The effects of ants’ nests on the physical, chemical and hydrological properties of a rangeland soil in semi-arid Spain. Geoderma, 2001, 105: 1-20 [55] Zacharov AA, Ivanickaja EF, Maximova AE. Accumulation of elements in nests of red wood ants. Pedobiologia, 1981, 21: 36-45 [56] Li D, Liu M, Cheng Y, et al. Methane emissions from double-rice cropping system under conventional and no tillage in Southeast China. Soil and Tillage Research, 2011, 113: 77-81 [57] Singh SN, Kulshreshtha K, Agnihotri S. Seasonal dynamics of methane emission from wetlands. Chemosphere: Global Change Science, 2000, 2: 39-46 [58] King GM, Schnell S. Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption. Nature, 1994, 370: 282-284 [59] Siciliano A, Ruggiero C, De Rosa S. A new integrated treatment for the reduction of organic and nitrogen loads in methanogenic landfill leachates. Process Safety and Environmental Protection, 2013, 91: 311-320 [60] Bender M , Conrad R . Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biology & Biochemistry, 1995, 27: 1517-1527 [61] Murrell JC, Dalton H. Nitrogen fixation in obligate Methanotrophs. Microbiology, 1983, 129: 3481-3486 [62] Auman AJ, Speake CC, Lidstrom ME. nifH sequences and nitrogen fixation in type I and type II methanotrophs. Applied and Environmental Microbiology, 2001, 67: 4009-4016 |
[1] | LI Jiayu, SHI Xiuzhen, LI Shuaijun, WANG Zhenyu, WANG Jianqing, ZOU Bingzhang, WANG Sirong, HUANG Zhiqun. Effects of stand ages on soil enzyme activities in Chinese fir plantations and natural secondary forests [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 339-346. |
[2] | JI Yongkang, MA Nan, ZHANG Hui, LI Cuihuan, MA Yuandan, WU Qiqian, LI Yan. Effect of seasonal distribution in precipitation on soil nitrogen mineralization in a subtropical forest [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 186-194. |
[3] | WU Xinyang, SHAO Jing, CHEN Xiaoping, LI Jinlong, HU Dandan, ZHONG Quanlin, CHENG Dongliang. Nutrient content and resorption efficiency of leaves of broad-leaved trees along altitudes in Wuyi Mountains, China [J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2305-2313. |
[4] | LI Aogui, CAI Shifeng, LUO Suzhen, WANG Xiaohong, CAO Lirong, WANG Xue, LIN Chengfang, CHEN Guangshui. C, N, and P stoichiometry for leaf litter of 62 woody species in a subtropical evergreen broadleaved forest [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1153-1160. |
[5] | ZHANG Kunfeng, WANG Shaojun, WANG Ping, ZHANG Lulu, FAN Yuxiang, XIE Lingling, XIAO Bo, WANG Zhengjun, GUO Zhipeng. Effects of ant nesting on seasonal dynamics of soil N2O emission in a secondary tropical forest [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1218-1224. |
[6] | ZHANG Yuhui, CHEN Juan, XU Chao, XIONG Decheng, YANG Zhijie, CHEN Shidong, MAO Chao. Effects of warming on quantity and structure of litter-derived dissolved organic matter in subtropical natural Castanopsis kawakamii forests [J]. Chinese Journal of Applied Ecology, 2023, 34(4): 946-954. |
[7] | MAO Chao, LIN Weisheng, XU Chao, LIU Xiaofei, XIONG Decheng, YANG Zhijie, CHEN Shidong. Soil warming decreased dissolved organic carbon quantity and quality in subtropical forests. [J]. Chinese Journal of Applied Ecology, 2023, 34(3): 623-630. |
[8] | LIU Yanji, LIU Zikai, JIN Shengsheng, DENG Huiyu, SHEN Jupei, HE Jizheng. Response of gene abundance of ammonia-oxidizing microorganisms and denitrifying microorganisms to nitrogen and phosphorus addition in subtropical forest. [J]. Chinese Journal of Applied Ecology, 2023, 34(3): 639-646. |
[9] | LIN Sinuo, SU Yangui, LYU Kun, WU Guopeng, HUANG Zhengyi, WANG Jingjing, HUANG Gang. Altitudinal pattern and driving factors of soil fungal community in the tropical forest of Jianfengling, Hai-nan, China [J]. Chinese Journal of Applied Ecology, 2023, 34(2): 349-358. |
[10] | ZHAN Pengfei, TONG Chuan. Methane emissions partially offset carbon sink function in global wetlands: An analysis based on global data. [J]. Chinese Journal of Applied Ecology, 2023, 34(11): 2958-2968. |
[11] | FENG Meng-meng, LIN Yong-xin, HE Zi-yang, LIU Xiao-fei, CHEN Shi-dong, WAN Song, DUAN Chun-jian, YE Gui-ping, HE Ji-zheng. Responses of soil ammonia-oxidizing microorganisms to simulated nitrogen deposition in a natural Castanopsis carlesii forest [J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1622-1628. |
[12] | XIA Yun, SHI Jia-qi, XIAO Hua-cui, WANG Quan-cheng, YANG Liu-ming, FAN Yue-xin. Optimization for the determination of phenol oxidase activity in subtropical forest soils developed on sandstone [J]. Chinese Journal of Applied Ecology, 2022, 33(5): 1223-1232. |
[13] | CHEN Tian, YUAN Fang-hui, ZHANG Lin-mei, HU Ya-lin. Effects of addition of leaf litter with different chemical properties on soil organic carbon mineralization and priming effect [J]. Chinese Journal of Applied Ecology, 2022, 33(10): 2602-2610. |
[14] | ZHANG Yao-yi, NI Xiang-yin, YANG Jing, TAN Si-yi, LIAO Shu, WU Fu-zhong. Nitrogen and phosphorus resorption and stoichiometric characteristics of different tree species in a mid-subtropical common-garden, China. [J]. Chinese Journal of Applied Ecology, 2021, 32(4): 1154-1162. |
[15] | HONG Xiao-min, WEI Qiang, LI Meng-jiao, YU Tan-wei, YAN Qiang, HU Ya-lin. Effects of aboveground and belowground litter inputs on the balance of soil new and old organic carbon under the typical forests in subtropical region [J]. Chinese Journal of Applied Ecology, 2021, 32(3): 825-835. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||